рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Распространение тока в металлических массах. Поверхностный аффект.

Распространение тока в металлических массах. Поверхностный аффект. - раздел Право, ГЛАВА III Электрическое смещение В Предыдущих Параграфах Настоящей Главы Были Обследованы Общие Законы Распрос...

В предыдущих параграфах настоящей главы были обследованы общие законы распространения электромагнитной энергии. Остано­вимся теперь на более детальном рассмотрении процесса движения энергии в проводящей среде после того, как энергия вошла в эту среду из диэлектрика.

Изучение происходящих при этом явлений особо интересно потому, что, как опыт показывает, при распространении перемен­ного тока в металлических массах наблюдаются уклонения от обыч­ных законов распределения тока по сечению проводника: именно, в то время как при постоянном токе плотность его по всему сече­нию проводника равномерна, при переменном токе, особенно при высоких частотах, замечаются значительные отступления от этой

 

равномерности, причем, чем дальше от поверхности проводника, тем меньшей оказывается плотность тока, и тем больше ток отстает по фазе от напряжения. Это явление — неравномерное распределе­ние тока по сечению проводника—получило название поверхно­стного эффекта.

В силу поверхностного распределения тока, активной частью проводника, „несущей" ток при высоких частотах, является только более или менее незначительная его доля, прилегающая к наружной поверхности. Части проводника, более близкие к его оси, оказы­ваются при этих частотах почти лишенными тока и не принимаю­щими, практически, участия в электрокинетическом процессе. Все происходит так, как будто проводник не представляет собою сплош­ной массы, а является полым внутри. Если вспомнить, что сопро­тивление проводника находится в обратно-пропорциональной зависи­мости от площади его поперечного сечения, при чем предполагается, что все это сечение пронизывается электрическим током, то станет ясно, что уменьшение активной части сечения проводника эквива­лентно увеличению его омического сопротивления. Чем выше частота, тем меньшая часть поперечного сечения проводника оказывается нагруженной током, тем больше, стало быть, действую­щее омическое сопротивление этого проводника.

Необходимо здесь отметить, что при таких условиях, т. е. при явлении поверхностного распределения тока, внутренняя, т. е. при­легающая к оси часть проводника оказывается совершенно беспо­лезной и лишь удорожает стоимость проводки, так как увеличивает количество затраченного металла. Поэтому в установках, работаю­щих при таких высоких частотах, при которых явление поверхно­стного эффекта уже резко выражено, часто употребляют или полые проводники, или же проводники, составленные из очень большого числа тонких изолированных проволочек, благодаря чему достигается значительное увеличение полезной поверхности проводника при данном его сечении.

При изучении всякого явления бывает полезно составить себе, для уяснения механизма явления, более или менее простую рабо­чую схему, помогающую связать происходящее явление с какими-либо конкретными и знакомыми представлениями. В качестве такой схемы для данного случая можно предложить следующее. Мы можем представить себе всякий проводник состоящим из ряда цилиндрических коаксиальных элементов малого сечения, располо­женных вокруг его оси. Не трудно убедиться, что элементы, распо­ложенные у периферии проводника, связаны с меньшим магнитным потоком, чем элементы, лежащие внутри проводника. В самом деле, в то время как с первыми связан лишь магнитный поток, наводящийся вне проводника, магнитный поток, связанный с вну­тренними элементами, больше на величину потока, распределенного внутри металла. При переменном токе, связанный с током магнит­ный поток является также переменным. Всякое же изменение маг­нитного потока связано с возникновением в проводнике обратной ЭДС. На основании только что сказанного, мы должны притти

 

к заключению, что во внутренних элементах провода будет индук­тироваться большая обратная ЭДС, чем во внешних. Влияние этой обратной ЭДС сказывается, во первых, в ослаблении силы тока и, во-вторых, в появлении разности фаз между током и напряжением. По приведенной схеме оказывается совершенно ясным, что внутренние элементы проводника, как связанные с большим магнитным потоком, представят большее полное сопротивление (z) и обусловят больший сдвиг тока по фазе.

Перейдем теперь к математическому обследованию вопроса. Обратимся к уже известный нам уравнениям Максвелла в той их форме, которую можно применить к случаю проводникового тока, именно, возьмем уравнения, связывающие силу тока с силою магнитного поля (см. § 119):

Будем здесь рассматривать Jx, Jy и Jz как составляющие плот­ности чисто проводникового тока. При этом, вообще говоря, плот­ность тока J является функцией геометрических, координат и вре­мени, т. е:

Возьмем первое из уравнений (154) и умножим обе его части на величину магнитной проницаемости m. Так как мы предположим, что имеем дело со средой, для которой m=const, и так как В=mН, т. е.:

то, вводя в правой части уравнения m под. знак производной, получим:

Возьмем производную от полученного уравнения по времени:

*

 

 

Но на основании второй группы уравнений Максвелла (136)

имеем:

Составляющие же электрического поля Ех, Еу и Ez, в случае проводникового тока, представляют собою падение напряжения на длине в 1 см по направлению соответственной оси, т. е. мы имеем право написать:

где r — удельное сопротивление материала проводника. Следова­тельно, только что написанные уравнения (156) можно представить в следующем виде:

Подставляя эти выражения в уравнения (155), получим:

Прибавив и отняв от правой части равенства величину:

получим следующее уравнение: (157)

Выражение:

представляющее собою сумму частных производных по трем гео­метрическим координатам от составляющих плотности тока, равно нулю, что легко показать. Именно, возьмем группу уравнений

 

 

Максвелла (154) и, продифференцировав эти три уравнения со­ответственно по х, по у и по z, получим:

Сложим эти уравнения почленно. При этом правая часть урав­нения даст нуль. Таким образом, получаем:

Итак, уравнение (157) принимает вид:

Совершенно аналогичными рассуждениями можно получить два других уравнения:

Эти уравнения вполне определяют характер распределения тока в металлических массах, так как они связывают математически изменение тока во времени с из­менением его по всем геометри­ческим координатам. По форме эти уравнения вполне тождественны уравнениям, определяющим те­чение теплоты вследствие тепло­проводности. Отсюда непосред­ственно следует, что со стороны формальной проникновение токов внутрь массы металла совершается по тем же законам, что и про­никновение тепла от нагретой по­верхности внутрь тела. С целью общего исследования закона распределения электрического тока в массе проводника решим по­лученные уравнения (158) для простейшего частного случая. Пусть (рис. 191) по поверхности раздела ABCD, являющейся одновременно координатной плоскостью YOZ, существует равномерное распре­деление переменного тока.

Ось ОХ направим вниз, т, е. в тело

 

проводника. Допустим далее, что этот переменный ток ориентиро­ван в направлении параллельном оси OZ, Тогда будем иметь:

Jx=0

и

Jy=0.

Если поверхность раздела ABCD, а также и масса проводника, безгранично велики и, следовательно, нет причин для изменения ориентировки тока, то эта последняя на любой глубине будет одна и та же. На поверхности раздела плотность тока имеет вследствие равномерности распределения одно и то же значение для всех точек. Плотность тока Jг на любой глубине будет зависеть только от времени t и геометрической координаты х:

Jz=f(t,x).

При наличии же данного условия уравнение (158'") примет

вид:

Для решения полученного уравнения примем дополнительное условие, а именно, предположим, что по поверхности раздела течет гармонически изменяющийся ток, определяемый некоторым выраже­нием вида:

Здесь:

где f — частота данного переменного тока. Придавая f любое зна­чение, можем получить результат, соответствующий каким угодно

частотам.

В таком случае плотность тока в любой точке внутри метал­лической массы можно представить вещественной частью комплекс­ного количества:

где e, есть основание натуральных логарифмов, a j=Ö-1. Итак, полагаем:

(159)

и подставляем эго значение для Jz в уравнение:

 

не забывая только, что реальное значение плотности силы тока равно вещественной части данного комплекса. Произведя указанную подстановку, получим:

что дает по дифференцировании (если принять во внимание, что k зависит от x: и не зависит от t):

или по сокращении на ejwt:

Вводя обозначение:

приведем это уравнение к виду:

' Решение полученного дифференциального уравнения (160) может быть написано в общей форме:

где А1 и А2 постоянные интегрирования, определяемые из началь­ных условий. A2 должно быть равно нулю, так как если А2¹0, то при удалении исследуемой точки от плоскости раздела внутрь про­водника, т. е. при возрастании координаты х, сила тока должна возрастать беспредельно, что противоречило бы закону сохранения энергии. Следовательно,

А2=0

и решение уравнения (160) представится в виде:

(161)

Преобразуем это решение, для чего определим р. По условию:

следовательно,

 

Выражение j1/2 представим в ином виде:

 

 

или:

или:

В таком случае выражение для р примет вид:

Отсюда имеем для k на основании (161):

Подставляя полученное решение в выражение для силы тока (159), получим:

или:

а вспоминая, что реальное значение плотности тока выражается в данном случае вещественной частью комплекса, получим:

Подставляя сюда значение a:

получим окончательно:

(162)

Полученное выражение показывает, что с изменением коорди­наты х меняется и амплитуда и фаза тока. Подставляя значение

х=0

получим:

что приводит нас, как и следовало ожидать, к уравнению:

т. е. к выражению для силытока на поверхности раздела.

 

 

Нас интересует главным образом амплитуда плотности тока и потому мы в дальнейшем сосредоточим наше внимание исключительно на выражении:

Разберем некоторые конкретные случаи. Остановимся, например, на меди, для которой m=1 и r=1600; подставляем эти данные в выражения для амплитуды при частоте f=100 периодов в се­кунду и, следовательно, при 2pf=2p•100.

Имеем:

 

Таким образом, ток пропорционален. Примем начальные условия такими, чтобы при x=0, т. е. поверхности раздела, было;

Jm=A=1.

В таком случае будем иметь:

Если же, например, f=106 периодов в секунду, то получим:

Отсюда вытекает вывод очень важный для техники токов боль­шой частоты: в случае частот порядка миллионов в секунду, прак­тически можно не считаться с токами, циркулирующими в глубине проводника.

Для железа, принимая r=10000 и m=1000, получаем при f=100 следующие результаты:

и, следовательно,

 

 

Если же принять f=106, то Jm=eps-2000x и получаем:

В. Томсон (лорд Кельвин) назвал явление, нами рассмотрен­ное, явлением поверхностного эффекта, —skin-effect (skin=шкурка, пленка, слой). Как пример ко всему вышеизложенному, рассмотрим следующее. Предположим, что мы имеем некоторый обычный про­водник. При прохождении по нему переменного тока мы будем наблюдать то же явление skin effect'a, которое выше было матема­тически обследовано для простейшего случая. Благодаря этому, омическое сопротивление проводника переменному току ra будет больше омического сопротивления току постоянному rc. Это не­равенство сопротивлений является, как выше было разъяснено, результатом неодинаковой плотности тока в различных слоях про­водника, т. е. тем, что не все части проводника одинаково полно использованы для проведения тока.

Вопрос об увеличении сопротивления проводника при прохожде­нии по нему переменного тока занимал, кроме В. Томсона, еще лорда Рэлея, Ми, Госпиталье и других. Точное математиче­ское решение задачи для случая обычного проводника с круговым сечением приводит к сложным выкладкам, и мы поэтому ограни­чимся только результатами, пригодными для простых вычислений. Приводим выборку из таблицы, составленной Госпиталье для меди на основании расчетов и опытов В. Томсона.

Из таблицы непосредственно видно, как изменяется сопро­тивление медного проводника при изменении его диаметра d или частоты переменного тока /. На практике, в технике низ­ких частот, частота редко превышает 50 — 60 периодов в се­кунду; диаметр проводников обычно сравнительно редко делают более 1—11/2 см. Поэтому величина fd2 обычно не превы­шает 60*1,52=135. Следовательно, ra почти не отличается от rc, Но в области радио, где применяются большие частоты, ra значи­тельно превосходит rf Что касается железных проводов, то уже

 

при низких частотах, вследствие более высокой магнитной проницаемости, происходит значительно большее увеличение сопроти­вления, чем для медных проводов. Учет явления при железных проводах очень осложняется тем, что m непостоянно и, кроме того, сказывается на ra влияние гистерезиса.

В последние годы в качестве материала для проводов начали употреблять еще алюминий (передача энергии и т.д.). Алюминиевые проводники более выгодны в отношении явления неравномерного распределения тока, чем медные, вследствие того, несомненно, что их проводимость почти вдвое меньше таковой же у медных. Ниже мы даем еще одну таблицу для сравнения процентного увели­чения сопротивления для алюминиевых и медных проводников.

Явление skin-effect'a имеет место между прочим и в проводниках машин переменного тока: в данном случае сопротивление также увеличивается. Необходимо оговориться еще, что там это явление осложняется появлением токов Фуко в проводниках вследствие перемещений проводников в неравномерных полях (причина, почему проводники нередко расслаиваются).

 

1) Так как, вообще,

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА III Электрическое смещение

На сайте allrefs.net читайте: "ГЛАВА III Электрическое смещение"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Распространение тока в металлических массах. Поверхностный аффект.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика электромагнитных процессов.
В предыдущих главах мы коснулись одной стороны электромаг­нитных явлений, а именно, рассмотрели некоторые общие свойства магнитного потока и магнитного поля. Теперь сосредоточим наше внимание на др

Электрическое смещение. Основные положения Максвелла.
Известно, что между заряженными телами создается электрическое поле. Это поле деформирует диэлектрик, приводит его в некоторое напряженное состояние, называемое обычно электрической поляризацией

Мера электрического смещения.
Допустим, что мы имеем некоторый диэлектрик, и пусть действующая в нем в точке А электрическая сила Б направлена, как указано стрелкой (рис. 105).

Ток смещения.
Когда мы говорим об электрическом смещении, не следует, во­обще говоря, смешивать этого понятия с электрическим током. Термин „электрическое смещение" мы должны понимать как меру деформации, п

Теорема Максвелла.
Представим себе замкнутую поверхность s, внутри которой как-либо распределены электрические заряды q1,q2, q3 и т. д. Пусть ds представля

Природа электрического смещения.
Максвелл в своих рассуждениях относительно электрического смещения совершенно не касается природы электричества и того, как надо понимать его движение. Все это не имеет значения в фор­мальных постр

Формулировки.
Возвратимся к формулировке теоремы Максвелла: Взяв от обеих частей этого равенства производную по s, получим:

Механическая аналогия.
Остановимся теперь на одной простой механической схеме с целью лучшего уяснения принципа замкнутости тока, а также для того, чтобы наглядно показать значение введенного Максвеллом в науку представл

Непрерывность тока в случае электрической конвекции.
Переход электричества из одного места в другое путем движе­ния заряженных тел вообще и, в частности, заряженных элемен­тарных частиц называется электрической конвекцией и предста­вляет собою

Связь электрического поля с электромагнитными процес­сами. Область электростатики.
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его сле­дует рассматривать как одну из сторон того основного электро­магнитного проц

Закон Кулона и вытекающие из него определения и соотношения.
В настоящем параграфе мы даем краткую сводку основных определений и соотношений, относящихся к электрическому полю я вытекающих из закона Кулона. В первую очередь, конечно, напомним формулировку эт

Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
Рассмотрим в некотором электрическом поле две точки, А и В. Линейный интеграл электрической силы вдоль некоторого пути перехода от точки А к точке В, т. е.:

Электрическая деформация среды.
С точки зрения Фарадея и Максвелла, участие промежу­точной среды в передаче электрических действий от одного наэлек­тризованного тела к другому, а также во всех вообще процессах, совершающихся в эл

Линии смещения.
Линиями электрического смещения, или просто линиями сме­щения называются такие линии, построенные в электрическом поле, все элементы которых совпадают по направлению с векторами

Трубка смещения.
Трубкою смещения называется объем диэлектрика имеющий форму трубки, образующими которой служат линии смещения. Рассмотрим некоторую трубку смещения в промежутке между двумя наэлектр

Фарадеевские трубки.
В связи с тем, что было изложено в предыдущем параграфе об особых свойствах трубок смещения, оказывается целесообразным так подбирать размеры этих трубок, чтобы величина полного элек­трического сме

Фарадеевская трубка и количество электричества, с нею связанное.
В дальнейшем мы будем мыслить все электрическое поле за­полненным фарадеевскими трубками. Совершенно подобно тому, как это было в случае магнитного поля в отношении магнитных линий, можно рассматри

Вторая формулировка теоремы Максвелла.
Так как электрическое смещение сквозь поперечное сечение фарадеевской трубки равно единице, то, следовательно, каждая такая трубка, пересекая некоторую поверхность, привносит в вели­чину полного эл

Электризация через влияние. Теорема Фарадея.
Так называемая электризация через влияние, т. е. возникновение электрических зарядов на нейтральном до того проводящем теле в случае поднесения его к какому-либо другому заряженному телу, представл

Энергия электрического поля.
Выше было в достаточной степени выяснено (§§ 1 и 47), что, согласно воззрениям Фарадея и Максвелла, в пространстве, в котором существует электрическое поле, среда находится в особом вынужденном сос

Механические проявления электрического поля.
Механические взаимодействия, наблюдаемые в электрическом поле между наэлектризованными телами и формально описываемые при помощи закона Кулона, могут быть объяснены, с точки зрения &nbs

Преломление фарадеевских трубок.
При переходе фарадеевских трубок (и вообще линий смещения) из одной диэлектрической среды в другую обычно мы имеем дело с изменением направления у са­мой поверхности раздела ди­электриков. Это явле

Электроемкость и диэлектрическая постоянная.
Допустим, что потенциал какого-либо проводящего тела есть U, а потенциалы всех других проводников, находящихся в электриче­ском поле, равны нулю. В этом случае между потенциалом данного тела

Свойства диэлектриков.
В заключение настоящей главы мы дадим краткий обзор неко­торых основных свойств изолирующих материалов (диэлектриков): а) Диэлектрическая постоянная e. Она является главной ха­ракте

Общие соображения о природе тока.
В настоящей главе мы в самых общих чертах ознакомимся с современным состоянием вопроса о природе электрического тока. Хотя вопрос этот по существу относится к области чистой физики, однако,

Движение электричества внутри проводников.
Шестьдесят лет тому назад, говоря об электрическом токе как о явлении кинетического характера, Максвелл не мог не отме­тить того обстоятельства, что он ничего больше не в состоянии сказать о природ

Участие электрического поля в процессе электрического тока.
Основная мысль Фарадея относительно роли проводника, по которому течет ток, заключается, как было отмечено в предыдущем параграфе, в том, что проводник служит своего рода осью, вокруг которой надле

Участие магнитного поля в процессе электрического тока.
Представление о механизме того процесса, который происходит в пространстве вокруг проводника с током и который органически связан с магнитным полем, можно получить из картины преобразо-

Общие соображения.
В предыдущей главе мыпознакомились с общей характеристи­кой того сложного электромагнитного комплекса, который воспри­нимается нами, как электрический ток. Мы видели, что основной

Ионизирующие агенты.
Ионизирующим агентом называется всякий физический деятель, обусловливающий ионизацию газа, или, в более широком смысле этого термина, всякий деятель, обусловливающий появление в дан­ном объе

Заряд и масса иона.
Из сказанного в предыдущих параграфах следует прежде всего, что заряды, несомые положительными и отрицательными ионами, бу­дучи обратными по знаку, должны быть тождественными по абсо­лютной величин

Влияние давления газа на характер разряда.
Общий характер явлений, наблюдаемых при прохождении элек­трического тока через газ, т. е. при так называемом разряде через газ, зависит от целого ряда обстоятельств, как это уже отчасти должно быть

При атмосферном давлении.
Остановимся теперь на случае прохождения электрического тока через газ при атмосферном давлении. Ради простоты предпо­ложим, что мы имеем дело с воздухом. Представим себе (рис. 134) некоторый генер

Основные соотношения, характеризующие ток через газы.
Обратимся к схеме, изображенной на рис. 134, и допустим, что газ в промежутке между электродами В к С ионизируется не­которым неизменно действующим агентом, интенсивность которого будем хара

Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электриче­ская сила достигает такого значения, при котором начинается иони­зация газа

Разрывной разряд.
Интенсивная ионизация газа под влиянием сильного электриче­ского поля, характеризующая стадию тихого разряда, может, как мы знаем, завершаться разрывным разрядом, если только в системе нет ограниче

Вольтова дуга.
Мы уже имелислучай указывать выше (см. § 81), что при достаточной мощности генератора, питающего цепь, и при доста­точно малом общем сопротивлении цепи — разряд через газообраз­ную среду между двум

Дуговые выпрямители.
Дуговые выпрямители основаны на использовании неодинако­вой роли положительного и отрицательного электродов вольтовой дуги. В то время, как положительный электрод играет пассивную роль в осн

Давлениях.
В случаях, когда стадия „тихого разряда" (см. § 81) имеет место в газообразной среде при достаточной степени разряжения (порядка 0,1 мм ртутного столба), с большой отчетливостью вы­явля

Прохождение электрического тока через пустоту.
Если в условиях опыта, о котором мы говорили в конце преды­дущего параграфа, после достижения стадии развития катодных лучей при высоком разрежении газа мы будем продолжать откачи­вать газ, достига

Пустотные электрон­ные приборы.
При практическом исполь­зовании накаленного катода для проведения электриче­ского тока через пустотные приборы в настоящее время применяются самые разно­образные конструкции катода и самые разнообр

Основные положения Максвелла.
Настоящая глава посвящена изучению всякого рода динамиче­ских проявлений того электромагнитного процесса, который про­исходит в системе электрических токов. Мы будем при этом следовать пути, которы

Вторая форма уравнений Лагранжа.
Обоснование положения, что электрический ток есть явление кинетического характера, позволило Максвеллу дать стройное математическое исследование этого явления с помощью второй формы уравнений Лагра

Координатах.
Так как обобщенные координаты, как было выше указано, вполне определяют положение всех частей системы, то они должны быть связаны некоторыми зависимостями с декартовыми координатами всех точек сист

Выбор обобщенных координат для электродинамической системы.
Всякая электродинамическая система, вообще говоря, предста­вляет собою совокупность проводящих цепей, по которым проте­кают электрические токи, т. е. механическую систему, совмещенную с системой эл

Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
По аналитическому строению выражения для кинетической энергии (Т) электродинамической системы можно судить и о фи­зическом характере этой энергии. В самом деле, выражение для кинетической эн

Общее обследование сил, действующих в электродинами­ческой системе.
При наличии в системе процессов механических и электриче­ских мы должны иметь в виду соответственно два рода сил: силы механические и силы электродвижущие. Если известна полная кинетическая энергия

Электрокинетическая энергия.
После общего обследования всех сил, могущих обнаруживаться в системе проводников с токами, сосредоточим наше внимание на электрокинетической энергии Te и рассмотрим более подробно

Электродвижущая сила самоиндукции.
Рассмотрим сначала простейшую систему, состоящую из одного проводящего контура (рис. 153). Если к этому контуру п

Коэффициент самоиндукции.
Для количественного определения коэффициента самоиндукции некоторого контура мыможем воспользоваться любым из соотно­шений, характеризующих в той или иной степени электрокинетическ

Электродвижущая сила взаимной индукции.
Остановимся теперь на рассмотрении системы, состоящей из каких-либо двух проводящих цепей, по которым протекают элек­трические токи i1 и i2 (рис. 158).

Коэффициент взаимной индукции.
Совершенно подобно тому, что мы имели при определении коэффициента самоиндукции (см. соотношения 85 — 89 в § 99), и в случае количественного определения коэффициента взаимной индукции мы, вообще го

Индукции.
Обследуем теперь некоторые количественные соотношения между коэффициентами L1, L2 и М. Будем исходить из основного выраже­ния для электрокинетической энер

Общие выражения для магнитных потоков, сцепляю­щихся с отдельными контурами системы.
Рассмотрим теперь самый общий случай системы из n электри­ческих цепей. В этом случае, т. е. при наличии любого числа отдельных цепей, мы имеем:

Общие выражения для электродвижущих сил, индукти­руемых в отдельных цепях системы.
На основании всего вышеизложенного мы можем, подводя итоги, написать ряд нижеследующих соотношений для электродвижущих сил, индуктируемых в отдельных цепях рассматриваемой системы:

Роль короткозамкнутой вторичной цепи.
При рассмотрении явлений самоиндукции и взаимной индукции мы видели, что величина полной ЭДС, возникающей в некотором проводящем контуре в качестве реакции на производимое изменение общих электрома

Действующие коэффициенты самоиндукции и взаимной индукции.
Выше было в достаточной степени разъяснено, что коэффициент самоиндукции цепи есть функция исключительно геометрических размеров контура данной цепи. Приведенные выше примеры под­тверждают это поло

Электромагнитная сила. Общие соображения.
При анализе связи между кинетической энергией, присущей элек­тродинамической системе, и силами, возникающими в такой системе, было получено (см, § 96) общее выражение для так называемой э

Условия возникновения электромагнитной силы.
Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источ­ника.

Случай сверхпроводящнх контуров.
Для иллюстрации только-что сказанного рассмотрим некоторые случаи, когда токи в системе не сохраняются постоянными. В этом отношении особенный интерес представляют случаи сверхпроводящих цепей, соп

Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а ко

Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того

Случай прямолинейного проводника во внешнем магнит­ном поле.
Однако, иногда применяется и другой подход к анализу и ра­счету сил, действующих в электромагнитных механизмах. Именно, иногда исходят из рассмотрения сил действующих на отдельный участок пр

Электромагнитные взаимодействия в асинхронном двигателе.
При совершенной справедливости формулировки, говорящей о стремлении всякого контура с током охватить наибольший внеш­ний поток, интересно отметить, что в некоторых практических случаях это стремлен

Величина и направление электромагнитной силы в случае одного контура с током.
Рассмотрев физическую природу явления возникновения дви­жений в электродинамической системе, обратимся к определению величины и направления электромагнитной силы в различных ча­стных случаях.

Величина и направление силы электромагнитного взаимо­действия двух контуров с током.
Рассмотрим теперь случай двух контуров, по которым проте­кают токи i1 и i2. Электрокинетическая анергия такой системы определяется выражением:

Контуров с током.
Обратимся к общему случаю системы, состоящей из произволь­ного числа контуров. Электрокинетическая энергия системы равна:

Электромагнитная сила, дей­ствующая на участок проводника с током, расположенный во внешней магнитном поле.
В тех случаях, когда вычисление внешнего потока, связанного с данным контуром, а следовательно, и опреде­ление приращения этого потока, оказывается затруднительным, удобнее пользоваться выражением,

Электромагнитное поле.
В главе III (§ 45) было уже указано, что явления электрического поля и явления магнитного поля ни в коем случае не следует рас­сматривать как совершенно самостоятельные совокупности явлений. Мы име

Основные уравнения электромагнитного поля.
Обратимся к выводу основных соотношений, характеризующих явления электромагнитного поля. Исходным пунктом этого вывода служат два соотношения, уже известные из предыдущих глав, именно? закон магнит

Распространение электромагнитной энергии.
Уравнения (133) и (134) по существу являются общим математическим выражением того факта, что при одновременном существовании взаимно связанных электрического и магнитного полей, т. е. при существов

Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении уста­новленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько ве

Опыты Герца.
Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказыва

Пойнтинга.
Вопрос о механизме распространения электромагнитных воз­мущений и связанного с этим движения электромагнитной энергии представляет глубокий интерес. На этом предмете останавливали свое внимание мно

Размерности электрических в магнитных величин.
1. Всякое электрическое и магнитное количество может быть выражено при посредстве основных единиц длины, массы и времени и специальных коэффициентов — диэлектрической постоянной e и магнитной прони

Предметный указатель.
Абсолютная электромагнитная еди­ница: количества электричества 193, коэффициента взаимной индукции 354, коэффициента самоиндукции 342,343, магнитного потока 47,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги