рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основы синтеза цифровых фильтров

Основы синтеза цифровых фильтров - Лекция, раздел Политика, Лекции 4 семестра по направлению 210700 Выражения Для Системных (Передаточных) Функций Ких И Бих Фильтров Позволяют П...

Выражения для системных (передаточных) функций КИХ и БИХ фильтров позволяют получить самые разнообразные частотные характеристики фильтров. Однако необходимо учитывать, что принципиально невозможно создать ЦФ, частотные характеристики которого в точности повторяли бы характеристики аналогового фильтра-прототипа (АФ-прототипа). Это объясняется тем, что АЧХ и ФЧХ ЦФ являются периодическими функциями частоты, причем период определяется интервалом дискретизации по времени . В то же время, можно так выбрать интервал , что интервал частот аналоговой цепи преобразуется в отрезок частоты цифровой цепи при сохранении общего вида АЧХ и ФЧХ. Это условие следует из теоремы отсчетов: , где - верхняя частота (частота задерживания) АФ – прототипа. Однако, если необходимо использовать фильтр для фильтрации сигнала из помех или разделения сигналов по частоте, то частота дискретизации должна определяться верхней частотой сигнала или помех. В противном случае помехи попадут в следующий период АЧХ цифрового фильтра. Далее, если известна операторная передаточная функция АФ-прототипа H(p), то заменой переменной можно получить передаточную (системную) функцию БИХ фильтра. Для этого в выражении H(p) необходимо подставить .

Однако реализовать такую системную функцию с помощью структуры БИХ фильтров не удастся, поскольку они имеют дробно-рациональные передаточные функции, а замена переменной даст трансцендентную функцию, так как H(p) также дробно-рациональная функция.

Если частота дискретизации выбрана правильно, т.е. , то можно воспользоваться билинейным преобразованием:

 

где γ = , fП – полоса пропускания АФ-пототипа, fД –частота дискретизации.

Билинейное преобразование приведет к тому, что, во-первых, частотные характеристики АФ-прототипа и ЦФ будут совпадать, а, во-вторых, системная функция будет дробно-рациональной. Приближение будет тем точнее, чем меньше ωТД, т. е. на низких частотах и при достаточно малом интервале дискретизации ТД. Именно при этих условиях характеристики АФ и ЦФ будут совпадать. Если воспользоваться билинейным преобразованием без учёта ограничений “теоремы отсчётов” (теоремы Котельникова), то проведённый синтез может не дать требуемого результата. Это объясняется тем, что реальные фильтры-прототипы имеют непрерывную АЧХ во всём диапазоне частот. Поэтому теоретически всегда АЧХ синтезированного ЦФ будет отличаться от непрерывной АЧХ прототипа, особенно в области верхних частот из-за эффекта перекрытия.

Таким образом, процедура синтеза ЦФ состоит в том, что в передаточной функции аналогового фиьтра-прототипа осуществляется замена переменной по формуле билинейного преобразования. Полученная системная функция будет дробно-рациональной и позволяет использовать структуру КИХ или БИХ фильтра для технической реализации цифрового фильтра.

Синтез КИХ-фильтров, отличающихся большим быстродействием по сравнению с БИХ-фильтрами, чаще основан на методе инвариантности импульсной характеристики. Поскольку АФ-прототип имеет бесконечную во времени убывающую импульсную характеристику, то задача синтеза заключается в правильном ограничении числа отсчетов характеристики N в выражении H(z). Ограничение числа отсчетов импульсной характеристики эквивалентно ее умножению на функцию “окна”. В простейшем случае это может быть прямоугольная функция, которая приводит к простому ограничению числа отсчетов. Однако в этом случае возникают искажения АЧХ фильтра (эффект Гиббса), что приводит к уменьшению ослабления в полосе задерживания фильтра. Поэтому необходимо применять функции “окна” без разрыва непрерывности, например, функцию Хэмминга

W(t)= .

Тогда импульсная характеристика быстродействующего ЦФ в формуле будет определяться как .

В качестве примера решения тестового задания рассмотрим типичное ТЗ.

Необходимо определить передаточную функцию и структуру цифрового фильтра, имеющего импульсную характеристику:

h(k)={1;-1;2}

Используя выражение для передаточной функции находим

 

 

 

Этой передаточной функции соответствует структурная схема, приведенная на

рис. 7.4

 

Рис. 7.4

Тема 3. Цепи с распределенными параметрами

 

– Конец работы –

Эта тема принадлежит разделу:

Лекции 4 семестра по направлению 210700

Тема спектральное представление колебаний.. лекция спектральное представление.. лекция спектральное представление непериодических сигналов будем..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основы синтеза цифровых фильтров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Спектральное представление негармонических периодических сигналов
В основе расчетов электрических цепей при периодических несинусоидальных или непериодических воздействиях лежат спектральные представления токов и напряжений. Спектр является важнейшей и единственн

Спектральное представление непериодических сигналов
Спектральный анализ периодических сигналов с помощью ряда Фурье может быть обобщен на случай непериодических сигналов. Среди непериодических сигналов наибольшее использование находят финитные сигна

Синтез фильтров по рабочим параметрам. Фильтры Баттерворта и Чебышева
Электрическим фильтром называют четырехполюсник, пропускающий электрические колебания в определенной полосе частот, называемой полосой пропускания (ПП) и не пропускающий электрические колебания в

Фильтры Баттерворта и Чебышева
Если в качестве функции фильтрации использовать полином Баттерворта , то получатся фильтры Баттерворта. При использовании в качестве функции фильтрации полиномов Чебышева

Лекция 4
Схемная реализация полиномиальных фильтров Синтез ФНЧ-прототипа ставит своей задачей найти схему фильтра и параметры всех его элементов. Схема включения нагруженного ФН

Основные схемы включения операционных усилителей
На низких и очень низких частотах вместо LC-фильтров используют ARC-фильтры. Название фильтра определяется составляющими элементами А – операционный усилитель (активный элемент) , R – сопротивление

Дискретные и цифровые сигналы
Аналоговым (непрерывным во времени) называется такой сигнал, который описывается непрерывной функцией времени. Типичным аналоговым сигналом (точнее сообщением) является речь и изображение, гармонич

Преобразование формы сигналов
Процесс преобразования аналоговой формы сигнала в цифровую включает два этапа: дискретизацию во времени, рассмотренную в предыдущем разделе, и квантование по уровню. Если первая операция линейная,

Аналитическое описание дискретных сигналов
  Реально, при цифровой фильтрации, непрерывный сигнал s(t) описывается на интервале времени (0, Т0) совокупностью N отсчетов, следующих через интервал

Аналитическое описание цифровых электрических цепей
Центральной задачей обработки цифровых сигналов является цифровая фильтрация, которая осуществляется цифровым фильтром (ЦФ). ЦФ – является частным случаем цифровой ЭЦ. Таким образом, ЦФ – эт

Нерекурсивные цифровые фильтры
  Физически реализуемые алгоритмы дискретной фильтрации для формирования выходного дискретного сигнала могут использовать лишь предыдущие входные и выходные отсчеты. Если для

Синтез рекурсивных цифровых фильтров
Сигнал на выходе БИХ-фильтра во временной области определяется формулой дискретной свертки . Однако, поскольку алгоритм рекурсивный, то для формирования k-го отсчета выходн

Анализ процессов в длинных линиях
  Линией называют пару проводов, соединяющих источник с приемником сигнала, предназначенных для передачи энергии сигнала на расстояние. Это важный частный случай цепей с распределенны

Отражение волн на конце линии и режим бегущих волн
  Напряжение и ток в любой точке линии можно рассматривать как результат наложения двух волн: падающей и отраженной, как это следует из выражения (8.2). Если знак в показателе экспоне

Линии без искажений и использование отрезков длинных линий
Линией без потерь называют линию, в которой можно пренебречь рассеянием энергии. В этом случае резистивные первичные параметры будут равны нулю, т. е. . Тогда вторичные параметры будут определяться

Линии без искажений и использование отрезков длинных линий
При подключении несогласованной резистивной нагрузки действующие значения напряжения и тока на выходных зажимах линии связаны соотношением: , тогда коэффициент отражения . В линии одновременно прис

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги