рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Конвективный теплообмен

Конвективный теплообмен - раздел Политика, Курс лекций по направлениям двигательные установки летательных аппаратов дула Перенос В Движущейся Среде Любой Субстанции (Массы, Импульса, Теплоты) Происх...

Перенос в движущейся среде любой субстанции (массы, импульса, теплоты) происходит как молекулярным хаотическим движением, так и конвективным (макроскопическим) движением молей газа или жидкости. Конвективный теплообмен и трение по тракту двигателей изучают в концепции пограничного слоя, введенной Л. Прандтлем в механику жидкости и газа в 1904 г. Поток продуктов сгорания разделяют на область невязкого и нетеплопроводного ядра и пристеночную область, именно в которой происходит перенос импульса, теплоты и массы. Такой подход позволил существенно упростить задачу вычисления потоков теплоты и получить практические результаты.

Рассмотрим обтекание газовой фазой продуктов сгорания тракта некоторого условного РД с классическим соплом Лаваля согласно рис. 7.1. В общем случае можно допустить существование трех пограничных слоев: динамического, в котором происходит перенос импульса и возникают напряжения трения на стенке; теплового, в котором происходит перенос теплоты и возникает тепловой поток в стенку, и диффузионного, в котором происходит перенос компонент газовой смеси и возникает поток массы к стенке. На рис. 7.1 принята аналогия между переносом теплоты и массы (скалярная субстанция переноса, в отличие от импульса). Для пограничного слоя принята следующая система координат: продольная по контуру сопла s и нормальная к стенке ввиду того, что в теории сопла осевую координату обозначают х, а радиальную - либо r, либо у.

Математические формулировки потоков импульса, теплоты и массы получают в рамках линейной термодинамики необратимых процессов, близких к равновесию. При малых отклонениях от равновесия поток какой-либо субстанции есть произведение обобщенной термодинамической силы на коэффициент пропорциональности. Такое линейное соотношение именно и называют феноменологическим законом.

Тепловые и диффузионные потоки в смеси газов возникают при наличии хотя бы одного из следующих факторов:

- градиент температуры;

- градиент давления;

- градиент концентрации.

 

 

Рис.7.1. Развитее пограничных слоев по тракту сопла

 

Воздействие движущейся газовой фазы на стенку конструкции определяет напряжения трения, плотность конвективного теплового потока и массовую скорость подвода химически активных компонент. Значения их вычисляют с помощью феноменологических законов Ньютона, Фурье и Фика:

- напряжение трения ,

- плотность теплового потока , (7.1)

- плотность потока массы i-го компонента .

Здесь: - динамическая вязкость газа,

- теплопроводность газа,

- плотность газа,

- коэффициент диффузии i-гo компонента газа.

Тогда для определения напряжения трения и плотностей потоков теплоты и массы остается определить значения производных скорости, температуры и концентрации по нормальной к стенке координате на поверхности. А это оказалось исключительно трудной задачей, и механика жидкости и газа этим занимается более 100 лет.

Перенос импульса в жидкости или в газе, т.е. распределение касательных напряжений в потоке и на стенке сформулированы в уравнениях Навье-Стокса еще в середине XIX века. Но решение их во всем спектре возникающих практических задач до сих пор отсутствует, несмотря на огромную производительность имеющихся компьютеров. В первую очередь, это вызвано возникновением турбулентности.

Сначала инженеры при создании энергетических установок использовали эмпирические зависимости, полученные в экспериментах с помощью теории размерностей и подобия.

Более простым и доступным для исследования является выражение плотности конвективного теплового потока в стенку обтекаемой конструкции в виде закона Ньютона:

(7.2)
где - коэффициент пропорциональности или коэффициент конвективного теплообмена. Выражение (7.2) cтpoгo соответствует случаю обтекания тела несжимаемым стационарным потоком газа с постоянной во времени и по длине температурой и постоянной во времени и по длине тела температурой поверхности - тогда можно говорить о существовании коэффициента пропорциональности между плотностью теплового потока и термодвижущей силой, т.е. разностью температур . Сравнение (7.1) и (7.2) показывает, что , где - толщина пограничного слоя, но как определить эту толщину? - вся проблема в этом.

Практика создания технических устройств подтвердила применимость концепции коэффициента теплообмена не только в таких жестких условиях, но и при переменной температуре рабочего тела и температуре поверхности, а также действия ряда других факторов.

В сжимаемых течениях используют более корректный аналог формулы (7.2):

 


где - аналог коэффициента теплообмена или коэффициент массобмена (размерность ), - энтальпия восстановления на адиабатической поверхности и энтальпия газа при температуре стенки (изменение температуры газа поперек пограничного слоя существенное и значение удельной теплоемкости также может сильно изменяться).

Напомним основные числа и критерии подобия:

- число Рейнольдса как меру отношения инерционных и вязкостных сил в потоке , где - характерный размер исследуемой области течения;

- число Прандтля как отношение толщин динамического и теплового пограничных слоев

- число Нуссельта как отношение переноса теплоты конвекцией к переносу теплоты молекулярной теплопроводностью газа, ;

- число Стантона как отношение теплоты, подведенной к стенке обтекаемого тракта, к энергии движущегося газа ;

- диффузионное число Стантона как отношение массовой скорости вещества к стенке к плотности потока его в ядре ;

- число Шмидта как отношение переноса импульса к переносу вещества диффузией в бинарной смеси газов - коэффициент бинарной диффузии.

Связь между числами Стантона и Нуссельта имеет вид , а отношение чисел Прандтля и Шмидта есть число Льюиса (отношение интенсивностей диффузионного и кондуктивного переноса энергии).

В общем случае различают числа и критерии подобия. Согласно А. А. Гухману критерий подобия в отличие от числа есть комплекс из величин, наперед заданный по условию. В зависимости от решаемой задачи некоторые комплексы могут быть как числами, так и критериями.

Для безградиентного несжимаемого турбулентного пограничного слоя на гладкой непроницаемой пластине коэффициенты теплообмена вычисляют из соотношения

, (7.3)
где - температурный фактор; индекс «ст» означает, что все величины чисел подобия вычисляются при температуре стенки, т.е. , s - продольная координата расчетного сечения. Обычно пренебрегают небольшим начальным участком ламинарного режима течения.

Применяются также критериальные зависимости для стабилизированного течения жидкости в трубах средняя скорость

, (7.4)
в которой величины в числах подобия определены при температуре жидкости, а характерным размером служит диаметр трубы d, т.е. .

В 50-е годы XX века появилась работа Д.Р. Бартца (США) по исследованию конвективного теплообмена в соплах с небольшими значениями углов до- и сверхзвуковых частей контура на гладкой непроницаемой поверхности. Расчетная зависимость аналогична эмпирическим соотношениям для труб типа (7.4) только коэффициент согласования имел значение 0,026 для дозвуковой части и 0,023 для сверхзвуковой.

Но обтекание материалов тракта сопла даже простой конструкции (рис.7.1) уже характерно наличием ряда возмущающих факторов по сравнению с наиболее простыми (эталонными) условиями при течении на гладкой непроницаемой пластине.

К первой группе факторов относят особенности обтекания потоком продуктов сгорания:

- турбулентный режим в пограничном слое по тракту двигателя, за исключением отдельных небольших участков;

- сжимаемость (число Маха может достигать М = 4,5);

- градиент давления, особенно за минимальным сечением сопла;

- повышенная турбулентность ядра потока;

- двухфазность рабочего тела (продукты сгорания металлизированных топлив) (для РДТТ);

- сильная неизотермичность пограничного слоя;

- возможная нестационарность расхода рабочего тела.

Ко второй группе относят факторы, характеризующие состояние поверхности стенки:

- изменение температуры поверхности во времени и по длине тракта; проницаемость (вдув или отсос газа);

- шероховатость;

- тепловые эффекты окисления и испарения материалов.

Поэтому необходима реализация теории пограничного слоя с привлечением данных многочисленных экспериментов. На практике для расчетов коэффициентов теплообмена на гладкой непроницаемой, поверхности тракта сопла используют методику В.С. Авдуевского, учитывающую наличие отрицательного градиента давления, сжимаемость газа и неизотермичность пограничного слоя:

(7.5)
где - значения энтальпии потока при температуре торможения, восстановления и стенки, r - коэффициент восстановления температуры.

Число Рейнольдса определено по эффективной длине обтекаемого контура :

 

Эффективная длина пограничного слоя как раз учитывает наличие отрицательного градиента давления и определена из условия равенства интегральных характеристик пограничного слоя на пластине и в ускоренном течении.

 

Распределение значений коэффициентов теплообмена по тракту сопла, рассчитанных по формуле Бартца и методике B.C. Авдуевского, показано на рис. 7.2.

 

Рис.7.2. Распределение значений коэффициентов теплообмена по тракту сопла Лаваля: р0=5МПа; 1 – расчет по (7.5); 2 – расчет по методике Бартца

 

 

– Конец работы –

Эта тема принадлежит разделу:

Курс лекций по направлениям двигательные установки летательных аппаратов дула

Гоу впо мгту им н э баумана.. в е медведев а г минашин с д панин б б петрикевич..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Конвективный теплообмен

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткий исторический экскурс
Человечество впервые увидело реактивное движение на примере каракатицы – живого существа, передвигающего отбрасыванием воды и сокращением мышц внутри организма. Порох, состоящий из смеси с

Тяга ракетного двигателя
Энтальпию продуктов сгорания в камере сгорания в кинетическую энергию струи можно преобразовать различными способами: подводом теплоты и массы по тракту постоянной геометрии, ускорением в сужающихс

Удельные параметры ракетного двигателя
Абсолютная величина тяги РД никак не характеризует степень совершенства РД. Для ЖРД качественным показателем является удельный импульс тяги (удельный импульс) - величина импульса тяги двигателя с е

Расходный комплекс камеры
Задается соотношением . Размерность: в СИ β [м/с], в ТСЕ β[сек]. Характеризует удельный импульс, создаваемый только камерой сгорания (корпусом двигателя) без со

Коэффициент тяги
Задается соотношением . Коэффициент тяги показывает увеличение тяги двигателя вследствие наличия сопла. Иногда КТ называют безразмерной тягой. Теоретическое значение

Геометрическая степень расширения сопла
Эта величина не только определяет размеры сопла, но и характеризует основные параметры работы сопла: (или скорость ). Связь между основными параметрами определяется известными из газовой динамики с

Оценка эффективности ракетного двигателя
Очевидно, что эффективность РД можно оценивать только с позиций ЛА, т.е. критерии качества РД должны вытекать из целей ЛА как объекта высшего уровня иерархии. Из курса ОУЛА известно, что критерием

Топлива ракетных двигателей
Под топливом РД будем понимать вещество или совокупность веществ, способных к химическим реакциям с выделением энергии и к образованию высокотемпературных продуктов для создания тяги. Таких веществ

Жидкие ракетные топлива
По назначению жидкие ракетные топлива (ЖРТ) подразделяют на основные, пусковые и вспомогательные. Основные предназначены для создания тяги маршевых двигателей, т. е. разгона полезной нагрузки, а та

Коэффициент избытка окислителя
Рассмотрим соотношение компонентов в двухкомпонентном топливе. Горючее содержит преимущественно элементы с электроположительной валентностью (С, Н, AI, В и др.), а окислитель - с электроотрицательн

Твердые ракетные топлива
К твердым топливам, являющимися источниками энергии на борту ракеты и рабочего тела двигателей, предъявляют ряд требований, схожих с требованиями к жидким топливам. Ясно, что нужны рецептуры с наиб

ЛЕКЦИЯ 4
Продукты сгорания твердого топлива оказывают воздействие на материалы тракта и для массового совершенства тепловой защиты ДУ необходимо выбирать или создавать рецептуры с меньшим значением величины

Гибридные топлива
Гибридным называют топливо, в котором один компонент перед запуском двигателя находится в твердом виде, а другой - в жидком. Твердый компонент размещен в корпусе двигателя (аналогия с РДТТ), жидкий

Горение жидких топлив
С момента впрыска в камеру до полного преобразования в конечные продукты сгорания компоненты проходят путь сложных превращений. Рабочий процесс в камере должен обеспечить максимальную полноту сгора

Горение твердых топлив
Горение твердых топлив есть последовательность процессов в соответствии со схемой рис. 4.3. После прогрева поверхностного слоя баллиститного топлива устройством запуска ДУ происходит газификация то

Горение гибридных топлив
Горение происходит по поверхности твердого компонента, капли жидкого компонента движутся вместе с продуктами сгорания как жидкогазовая смесь, продукты испарения жидкости диффундируют к поверхности

Термодинамические расчеты состава и параметров рабочего тела
Моделирование рабочих процессов в РД начинает с расчета равновесного состава продуктов сгорания и значений термодинамических параметров ( и др.). Кроме того, необходимо знать переносные св

Термогазодинамика потока рабочего тела
Перейдем к термогазодинамике потоков – определению параметров движущегося рабочего тела. Рассмотрим наиболее простую модель движения газа: одномерное установившееся адиабатическое (изоэнтропическое

Течение газа в соплах
Сопло является трансформатором энергии в ракетном двигателе и его назначение - получение наибольшего значения скорости истечения рабочего тела, существенно превышающего значение скорости звука. Это

Профилирование сопла
В сопле камеры двигателя происходит расширение и разгон продуктов сгорания (рабочего тела), т.е. преобразование тепловой энергии, получаемой в камере сгорания, в кинетическую энергию движения газов

Потери удельного импульса в ракетных двигателях (в камере ЖРД и РДТТ)
Отличие параметров продуктов сгорания (рабочего тела) при действительном рабочем процессе в камере ЖРД, корпусе и СБ РДТТ (горение, расширение) от параметров идеального рабочего процесса учитываетс

Потери удельного импульса в сопле
Коэффициент потерь удельного импульса в сопле РД представляется в виде:   где - составляющие потерь в сопле. Представление аддитивной суммой не совсем корректно ввид

Двигателя твердого топлива
Газовая фаза продуктов сгорания топлив содержит кислородосодержащие компоненты ( и др.), которые через пограничный слой подходят к нагретой поверхности материалов тракта сопла и окисляют их. Возник

Радиационный теплообмен в ракетных двигателях
В высокотемпературных продуктах сгорания топлив ракетных двигателей происходят процессы переноса энергии в форме излучения - атомно-молекулярного перехода части внутренней энергии вещества в поток

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги