Нелинейные элементы. Их характеристики и свойства

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Березниковский филиал Кафедра технологии и механизации производств Реферат по теме: Нелинейные элементы. Их характеристики и свойства Выполнил: студент группы МАХП-04 (дн) Маслов А.П. 06 г. Проверил: к.т.н доцент Алыменко Д. Н, 06 г. Березники 2006 Нелинейные резистивные элементы. Напомним, что нелинейными называются электрические цепи, у которых реакции и воздейстивие связаны нелинейными зависимостями.Подобные цепи содержат один или несколько приборов, замена которых линейными моделями приводит к недопустимому нарушению количественной и качественной картины колебаний в цепи. Резистивными нелинейными цепями будем называть цепи, которые допустимо считать нелинейными безынерционными цепями.

В соответствии с этим модель нелинейной резистивной цепи не содержит реактивных элементов.В нее входят хотя бы один нелинейный безынерционный резистивный двухполюсник или многополюсник, хотя бы один источник напряжения или тока и то или иное число резистивных сопротивлений.

Для постороения многих функциональных узлов аппаратуры связи используется большой класс нелинейных двухполюсных полупроводниковых и электронных приборов, называемых диодами. Единственной электрической характеристикой диода является его вольт-амперная характеристика (ВАХ) - зависимость постоянного тока в диоде от постоянного напряжения на его зажимах i= F(u) при согласном выборе положительных направлений напряжения и тока. Отличительные особенности вольт-амперных характеристик некоторых типов диодов различного назначения и их условные (схемные) обозначения приведены на рис. 10.1. Это характеристики полупроводниковых приборов: выпрямительного диода (рис. 10.1, а), стабилитрона (рис. 10.1, б), туннельного диода (рис. 10.1, в) и динистора (рис. 10.1, г). Характеристики рис. 10.1, а, б получили наименование однозначных, а рис. 10.1, в, г - многозначных, так как у них одному и тому же значению тока (рис. 10.1, в) или напряжения (рис. 10.1, г) соответствуют разные напряжения и токи. Существуют и электронные приборы с подобными характеристиками.

В последующем, простоты ради, нелинейные резистивные двухполюсники будем называть нелинейными резисторами.

Схемное изображение нелинейного резистора приведено на рис. 2. Некоторые из нелинейных резисторов относятся к числу управляемых нелинейных элементов. Управляющей величиной может быть, например, внешняя температура, давление или освещенность.

Свойства таких резисторов определяются не одной, а семейством ВАХ, каждая из которых соответствует различным значениям управляющей величины.Транзисторы, электронные лампы, тиристоры и некоторые другие полупроводниковые и электронные приборы могут рассматриваться как нелинейные резистивные четырехполюсники. Например, при включении транзистора рис. 10.3, а, являющегося трехполюсником, в электрическую цепь один из зажимов оказывается общим для пары входных и пары выходных зажимов транзистора.

Поэтому транзистор принято рассматривать как четырехполюсник с двумя парами зажимов. На рис. 10.3, б показано такое включение транзистора по схеме с общим эмиттером. Нелинейный четырехполюсник, как и линейный, описывается двумя уравнениями, которые связывают напряжения и токи на его входе и выходе.Для включения транзистора по схеме с общим эмиттером (рис. 10.3, б) u1 =uБЭ - напряжение между базой и эмиттером, i2 = iК - ток коллектора, i1= iБ - ток базы и u2 = uКЭ - напряжение между коллектором и эмиттером.

Уравнения (10.1) и (10.2) изображаются в виде графиков. Так ui зависит от двух переменных i1 и u2 и, вообще говоря, его графическое изображение представляет собой поверхность в трехмером пространстве. Так как начертить такую поверхность трудно, то функцию двух переменных изображают на плоскости в виде семейства характеристик: фиксируется одна переменная и непрерывно изменяется другая.Графическое изображение уравнений (10.1) и (10.2) для транзистора в схеме с общим эмиттером показано на рис. 10.3, в и г. Это так называемые входная и выходная вольт-амперные характеристики.

Принято говорить, что ВАХ транзистора управляются, током или напряжением. Так, выходная ВАХ транзистора в схеме с общим эмиттером управляется током базы. ВАХ нелинейных полупроводниковых и электронных приборов находятся, как правило, в результате измерений и приводятся в соответствующих справочниках в виде усредненных графических зависимостей.Необходимость усреднения связана с большим (до 30 - 50% ) технологическим разбросом характеристик различных образцов прибора одного и того же типа. Эти характеристики являются статическими, т. е. характеристиками режима постоянного тока. Для резистивных нелинейных элементов (НЭ) важным параметром является их сопротивление, которое в отличие от линейных резисторов не является постоянным, а зависит от того, в какой точке ВАХ оно определяется.

Различают два вида сопротивлений: статическое и дифференциальное (динамическое). Статическое сопротивление Rcт определяется как (рис. 10.4). где U0 - приложенное к НЭ постоянное напряжение; I0 - протекающий через НЭ постоянный ток. Это сопротивление постоянному току; оно характеризуется тангенсом угла наклона прямой, проходящей через начало координат и рабочую току (U0, I0) на ВАХ НЭ. В силу предположения о резистивном характере цепи статические характеристики определяют одновременно и соотношения между мгновенными значениями напряжений и токов на внешних зажимах соответствующего нелинейного прибора.

Определим дифференциальное сопротивление RД как отношение приращения напряжения Du к приращению тока Di при небольшом смещении рабочей точки на ВАХ под воздействием переменного напряжения малой амплитуды (рис. 10.4): Это сопротивление представляет собой сопротивление НЭ переменному току малой амплитуды.

Обычно переходят к пределу этих приращений и определяют дифференциальное сопротивление в виде Оно характеризуется тангенсом угла наклона касательной к ВАХ в рабочей точке.

Нелинейные индуктивные элементы. Типичными динамическими нелинейными элементами электрической цепи являются катушки с сердечниками из ферромагнитных материалов - сплавов на основе металлов группы железа или их оксидов - ферритов.Нелинейность таких элементов обусловлена характеристикой намагничивания материала сердечника В(H). Поскольку в приближении теории магнитных цепей для замкнутого неразветвленного сердечника с постоянным сечением s и длиной l средней магнитной линии магнитный поток Ф пропорционален индукции В: Ф = Bs, а напряженность Н связана с током i в обмотке, имеющей w витков, соотношением Н = iw/l, то вид зависимости В(Н) предопределяет характер вебер-амперной характеристики катушки Y( i ) (Y=Фw - потокосцепление обмотки см. § 1.2). Типичная вебер-амперная характеристика индуктивного элемента приведена на рис. 10.5, а. В общем случае вид ВАХ индуктивного элемента определяется многими факторами, и она часто является неоднозначной.

Например, при циклическом намагничивании сердечника зависимость Y( i ) имеет гистерезисный характер (рис. 10.5, б). В этом случае процесс перемагничивания сопровождается необратимыми потерями в сердечнике.

Нелинейный элемент индуктивности характеризуется согасно (1.8) статической индуктивностью Lст =Y/i и дифференциальной индуктивностью LД = dY/di, которые зависят от намагничивающего тока i. Нелинейные емкостные элементы.Нелинейные емкостные элементы могут служить моделями конденсаторов, диэлектрическая проницаемость e которых является функцией от напряженности электрического поля Е в диэлектрике.

Такие емкостные элементы описываются нелинейной вольт-кулоновой характеристикой - зависимостью заряда q от приложенного напряжения u. Подобными свойствами обладают, в частности, сегнетоэлектрики, вольт-амперные характеристики которых, аналогичны характеристикам ферромагнетиков (рис. 10.6, а); обратно смещенные р-n -переходы (рис. 10.6, б) и др. Нелинейный элемент емкости характеризуется согласно (1.11) статической емкостью Сст = q/uc и дифференциальной емкостью Сд = dq/duc, которые зависят от приложенного напряжения uс. На рис. 10.6, в, г, показан характер изменения дифференциальной емкости для вольт-кулонных характеристик, изображенных на рис. 10.6, а и б, соответственно.

Список использованной литературы 1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд перераб. и доп. –М.: Высш. шк 1978. –528с. 2. Теоретические основы электротехники.

Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с. 3. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд перераб. –М.: Энергоатомиздат, 1989. -528с.