Обратный цикл Карно. Оценка эффективности работы холодильных установок, тепловых насосов и теплофикационных машин.

Перенос теплоты от охлаждаемого объекта 3 (см. рис 1) в окружающую среду 1 с минимальной затратой внешней энергии осуществляется с помощью обратного (холодильного) цикла Карно.

 

а) б) в)

Рис.3 а) - Обратный цикл Карно; б) – обратимый; в) – необратимый

 

Он состоит из четырех процессов изменения состояния рабочего тела: двух изотерм 2-3 и 4-1 и двух адиабат 1-2 и 3-4.

В процессе 4-1 (при постоянной температуре Tохл) от охлаждаемого объекта отнимается теплота q0 (площадь а-4-1-b). Затем рабочее тело сжимается (линия 1-2) при s = const (без теплообмена с окружающей средой), в результате температура тела повышается от Тохл до Токр. На совершение процесса сжатия затрачивается работа lсж. В процессе 2-3 (при Tокр = const) теплота q (площадь a-b-2-З) отводится от рабочего тела в окружающую среду. В адиабатном процессе расширения 3-4 рабочее тело совершает полезную работу lpaс, при этом температура тела снижается от Tокр до Tохл.

В результате передачи теплоты от охлаждаемого тела окружающей среде, т. е. при совершении обратного цикла Карно, затрачивается работа l (площадь 4-1-2-3).

Все процессы цикла Карно являются обратимыми.

Обратимым - называется такой идеальный процесс, на выполнение которого в пря­мом и обратном направлении не требуется затрат внешней энергии. Например, в идеальном процессе расширения сжатого газа получае­мая энергия qpac точно равна энергии qсж, затрачиваемой на сжатие газа, т. е. на возвращение его в начальное состояние. В этом случае dq = 0, следовательно, и ds =0.

В обратимых изотермических процессах подвода и отвода теплоты разница температур между охлаждаемым и рабочим телом, а также между рабочим телом и охлаждающей средой равна нулю.

Процессы и циклы, осуществляемые в реальных машинах, необратимы. Различают внутреннюю и внешнюю необратимость.

Внутренние потери –обусловленные нарушением равновесия в хладагенте

( трение, дросселирование, неравномерность температуры хладагента по объему, теплообмен со стенками проточной части компрессора и др.)

Внешние потери - связаны с тем, что реальные процессы подвода и отвода теплоты происходят при конечной разности температур между температурами рабочего тела и охлаждаемой и охлаждающей средами (рис. 3б).

При увеличении разности температур необратимость процесса увеличивается, вызывая дополнительный расход энергии l'>l. Любая необратимость процессов характеризуется ростом энтропии системы хладагент – внешние источники теплоты. Рост энтропии означает рассеяние (диссипацию) энергии. Рассеянная энергия не может быть превращена в работу.

Наиболее экономичные процессы осуществляются при бесконечно малой разности температур между источником теплоты и рабочим телом.

Энергетическая эффективность холодильного циклаоценивается холодильным коэффициентом ε, который равен:

(2)

- отношению количества отведенной теплоты от охлаждаемого тела к затраченной в цикле работе l.

 

По первому закону термодинамики энергия, переданная окружающей среде равна:

(3)

Энергетическая эффективность холодильного цикла оценивается холодильным коэффициентом

(4)

учитывая, что и (5),(6)

Получим: (7)

- холодный коэффициент цикла Карно зависит только от и , и в заданном интервале температур имеет наивысшее значение.

Сравнивая холодильные коэффициенты обратного цикла Карно и реального холодильного цикла в одинаковых температурных границах, можно определить степень его температурного совершенства.

(8)

- коэффициент совершенства холодильного цикла

 

- холодильный коэффициент рассматриваемого цикла;

- холодильный коэффициент обратного обратимого цикла Карно, построенного в том же интервале температур.

 

Энергетическая эффективность цикла теплового насоса и теплофикационных циклов определяется отношением количества теплоты q – переданной нагреваемому помещению, к затраченной работе l.

(9)

- коэффициент отопления

 

Коэффициент отопления с холодильным коэффициентом связан:

(10)

Лекция №3

 

Физические принципы получения низких температур

3.1. Фазовые переходы. Охлаждение при изменении агрегатного состояния.

3.2. Охлаждение с помощью дросселирования.

3.3. Охлаждение при расширении газов.

3.4. Вихревой эффект охлаждения.

3.5. Термоэлектрическое охлаждение.

 

В любом природном процессе осуществляется непрерывный переход теплоты от тел c высокой к телам с низкой температурой.

Охлаждающими телами в естественных условиях являются воздух, вода, лёд.

При естественном охлаждении температуру ниже температуры окружающей среды получить нельзя.

Рассмотрим искусственные способы охлаждения, основанные на различных физических процессах.

3.1Фазовые переходы

 

Все реальные вещества в зависимости от их параметров (в состоянии ниже критического) могут находиться в трех агрегатных состояниях или фазах: газовом, жидком и твердом. При изменении равновесных параметров (температуры и давления) вещество может переходить из одного фазового состояния в дру­гое. При этом поглощается или выделяется определенное количество тепла, называемоетеплотой фазового перехода.

На рис. 4 изображена фазовая диаграмма Р-t для воды. Точка Т на этой диаграмме является тройной точкой, в которой сосуществуют все три фазы. Для воды эта точка соответствует температуре 0,01°С и давлению 0,006112 бар. В этой точке пересекаются три кривые состояния равновесия двух фаз. В точках кривой Т-К равновесно сосуществуют жидкость и пар, и эта кривая носит название кривой парообразования (насыщения). Фазовый переход из твёрдой фазы в жидкую проходит через линию плавления (обратно - кристаллизация), а из твёрдой фазы в газообразную через линию сублимации (десублимация).

 

 

Рис. 4. Фазовая Р-t диаграмма для воды.

 

В данном случае, нас интересуют изменения агрегатного состояния тела (плавление, кипение, сублимация), сопровождаемые поглощением значительного количества теплоты, расходуемой на внутреннюю работу по преодолению сил сцепления между молекулами. На практике для получения охлаждающего эффекта используют хладагенты, у которых упоминаемые процессы фазовых переходов протекают при низкой температуре при нормальном атмосферном давлении.

Способы охлаждения, основанные на использовании фазовых превращений веществ возможны только при неограниченном запасе охлаждающих тел. Непрерывное получение холода при использовании одного и того же количества охлаждающего вещества возможно, если после получения холодильного эффекта оно возвращается в начальное состояние. Это осуществляется с помощью холодильных установок.