Одношарові та багатошарові штучні нейронні мережі. їх архітектурні особливості. Розрахунок вихідного вектору.

Хоча один нейрон і здатний виконувати прості процедури розпізнавання, сила нейронних обчислень виникає від з'єднань нейронів в мережах. Проста мережа складається з групи нейронів, створюючих шар, як показано в правій частині рисунка. Відзначимо, що вершини-круги зліва служать лише для розподілу вхідних сигналів. Вони не виконують будь-яких обчислень, і тому не вважатимуться шаром. З цієї причини вони позначені кругами, щоб відрізняти їх від обчислюючих нейронів, позначених квадратами. Кожен елемент з множини входів Х окремою вагою сполучений з кожним штучним нейроном. Кожен нейрон видає зважену суму входів в мережу. У штучних і біологічних мережах багато з'єднань можуть бути відсутніми, можуть мати місце також з'єднання між виходами і входами елементів в шарі.

Зручно вважати вагу елементами матриці W. Матриця має m рядків і n стовпців, де m - число входів, а n - число нейронів. Наприклад, w3,2 - це вага, що пов'язує третій вхід з другим нейроном. Таким чином, обчислення вихідного вектора Y, компонентами якого є виходи OUT нейронів, зводиться до матричного множення Y = XW, де Y і Х - вектори-рядки.

Багатошарові мережі володіють значно більшими можливостями, ніж одношарові. Проте багатошарові мережі можуть привести до збільшення обчислювальної потужності в порівнянні з одношаровими лише в тому випадку, якщо активаційна функція між шарами буде нелінійною. Обчислення виходу шару полягає в множенні вхідного вектора на першу вагову матрицю з подальшим множенням (якщо відсутня нелінійна активаційна функція) результуючого вектора на другу вагову матрицю (XW1)W2. Оскільки множення матриць асоціативне, то X(W1W2). Це показує, що двошарова лінійна мережа еквівалентна одному шару з ваговою матрицею, рівною добутку двох вагових матриць. Отже, для лінійної активіаційної функції будь-яка багатошарова лінійна мережа може бути замінена еквівалентною одношаровою мережею.