Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

 

Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значениюслева. По оси мы должны бесконечно близко приблизиться к точке разрыва слева.

Пример 9

Вычислить несобственный интеграл или установить его расходимость.

 

Подынтегральная функция терпит бесконечный разрыв в точке (устно проверяем, что с другим пределом интегрирования всё нормально!).

Для разнообразия я решу этот интеграл сразу – методом подведения функции под знак дифференциала. Те, кому трудно, могут сначала найти неопределенный интеграл по уже рассмотренной схеме.

 

Добавка обозначает, что предел у нас левосторонний, и к точке мы приближаемся по оси слева.

Разбираемся, почему дробь (это лучше делать устно или на черновике).
Подставляем под корень предельное значение :
и тогда

Окончательно:

Несобственный интеграл расходится.

Знак минус обозначает, что соответствующая криволинейная трапеция расположена под осью . Будьте очень внимательны в знаках. Да, конечно, несобственный интеграл расходится, но и – это разные вещи, разные жанры, и если Вы недосмотрите за знаками, то, строго говоря, допустите серьезную ошибку.

И заключительные два примера для самостоятельного рассмотрения:

Пример 10

Вычислить несобственный интеграл или установить его расходимость.

 

Пример 11

Вычислить несобственный интеграл или установить его расходимость.

 

Разбор ситуации, когда оба предела интегрирования «плохие», или точка разрыва содержится прямо на отрезке интегрирования, можно найти в статье Эффективные методы решения несобственных интегралов.

Пример 4: Решение:

Подынтегральная функция непрерывна на .

Пример 5: Решение:

Подынтегральная функция непрерывна на .

Несобственный интеграл расходится.

Пример 7: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Несобственный интеграл расходится.

Примечание: с пределом выражения можно разобраться следующим образом: вместо подставляем :

Пример 8: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Примечание: Разбираемся в пределе выражения . Если , то (см. график логарифмической функции!), тогда: . Именно эти соображения и помечаются как

Пример 10: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Пример 11: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Несобственный интеграл расходится

Примечание: Разбираемся в пределе выражения . Если , то , и тогда . Будьте очень внимательны в знаках!