Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение инеоднородное уравнение.

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Неоднородное ДУ второго порядка с постоянными коэффициентамиимеет вид:
, где и – константы, а – функция, зависящая только от «икс». В простейшем случае функция может быть числом, отличным от нуля.

Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!

Кроме того, чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:

Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:

По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции ничего не записываем.

– это обычное квадратное уравнение, которое предстоит решить.

Существуют три варианта развития событий.
Они доказаны в курсе математического анализа, и на практике мы будет использовать готовые формулы.

 

Характеристическое уравнение имеет два различных действительных корня

Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
, где – константы.

В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .

Пример 1

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня (от греха подальше лучше сразу же выполнить проверку, подставив корни в уравнение).
Всё, что осталось сделать – записать ответ, руководствуясь формулой

Ответ: общее решение:

Не будет ошибкой, если записать общее решение наоборот: , но хорошим стилем считается располагать коэффициенты по возрастанию, сначала –2, потом 1.

Придавая константам различные значения, можно получить бесконечно много частных решений.

Теперь неплохо бы освежить базовые понятия урока Дифференциальные уравнения. Примеры решений. А что значит вообще решить дифференциальное уравнение?Решить дифференциальное уравнение – это значит найти множество решений, которое удовлетворяет данному уравнению. Такое множество решений, напоминаю, называется общим интегралом или общим решением дифференциального уравнения.

Таким образом, в рассмотренном примере найденное общее решение должно удовлетворять исходному уравнению . Точно так же, как и диффура 1-го порядка, в большинстве случаев легко выполнить проверку:

Берем наш ответ и находим производную:

Находим вторую производную:

Подставляем , и в левую часть уравнения :

Получена правая часть исходного уравнения (ноль), значит, общее решение найдено правильно (оно, как проверено, удовлетворяет уравнению ).

Пример 2

Найти общее решение дифференциального уравнения, выполнить проверку

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

На самом деле проверка таких простейших примеров практически никогда не выполняется, но, дело в том, что навык и сама техника проверки очень пригодятся, когда вы будете решать более сложные неоднородные уравнения второго порядка. Поэтому было целесообразно сразу же ознакомить вас с алгоритмом.

Характеристическое уравнение имеет два кратных действительных корня

Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.

Если оба корня равны нулю , то общее решение опять же упрощается: . Кстати, является общим решением того самого примитивного уравнения , о котором я упоминал в начале урока. Почему? Составим характеристическое уравнение: – действительно, данное уравнение как раз и имеет совпавшие нулевые корни .

Пример 3

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

Здесь можно вычислить дискриминант, получить ноль и найти кратные корни. Но можно невозбранно применить известную школьную формулу сокращенного умножения:

(конечно, формулу нужно увидеть, это приходит с опытом решения)

Получены два кратных действительных корня

Ответ: общее решение:

Пример 4

Найти общее решение дифференциального уравнения

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Желающие могут потренироваться и выполнить проверку, но она здесь будет труднее.

 

Характеристическое уравнение имеет сопряженные комплексные корни

Для понимания третьего случая требуются элементарные знания про комплексные числа. Если материал позабылся, прочитайте урок Комплексные числа для чайников, в частности, параграф Извлечение корней из комплексных чисел.

Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:

Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:

Пример 5

Решить однородное дифференциальное уравнение второго порядка

Решение: Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни

Ответ: общее решение:

Пример 6

Решить однородное дифференциальное уравнение второго порядка

Полное решение и ответ в конце урока.

Иногда в заданиях требуется найти частное решение однородного ДУ второго порядка, удовлетворяющее заданным начальным условиям, то есть, решить задачу Коши. Алгоритм решения полностью сохраняется, но в конце задачи добавляется один пункт.

Пример 7

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям ,

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня, поэтому общее решение:

Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти ТАКИЕ значения констант, чтобы выполнялись ОБА условия.

Алгоритм нахождения частного решения следующий:

Сначала используем начальное условие :

Согласно начальному условию, получаем первое уравнение: или просто

Далее берём наше общее решение и находим производную:

Используем второе начальное условие :

Согласно второму начальному условию, получаем второе уравнение: или просто

Составим и решим систему из двух найденных уравнений:

Допустимо использовать «школьный» метод решения, но в высшей математике чаще применяют метод почленного сложения/вычитания уравнений системы, посетите соответствующий урок, если не знакомы с методом.

В составленной системе удобно разделить второе уравнение на 2 и почленно сложить уравнения:

Всё, что осталось сделать – подставить найденные значения констант в общее решение :

Ответ: частное решение:

Проверка осуществляется по следующей схеме:
Сначала проверим, выполняется ли начальное условие :
– начальное условие выполнено.

Находим первую производную от ответа:

– второе начальное условие тоже выполнено.

Находим вторую производную:

Подставим и в левую часть исходного дифференциального уравнения :
, что и требовалось проверить.

Такие образом, частное решение найдено верно.

Пример 8

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям , . Выполнить проверку.

Это пример для самостоятельного решения, ответ в конце урока. Если возникли затруднения с нахождение корней характеристического уравнения, прочитайте параграф Извлечение корней из комплексных чисел урока Комплексные числа для чайников. Если не помните значения тригонометрических функций, используйтеТригонометрические таблицы.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение.

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует. Потому-что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим: