Существующие подходы к визуальному моделированию сложных динамических систем

В настоящее время существует великое множество визуальных средств моделирования. Договоримся не рассматривать в этой работе пакеты, ориентированные на узкие прикладные области (электроника, электромеханика и т.д.), поскольку, как отмечалось выше, элементы сложных систем относятся, как правило, к различным прикладным областям. Среди оставшихся универсальных пакетов (ориентированных на определенную математическую модель), мы не будем обращать внимание на пакеты, ориентированные на математические модели, отличные от простой динамической системы (уравнения в частных производных, статистические модели), а также на чисто дискретные и чисто непрерывные. Таким образом, предметом рассмотрения будут универсальные пакеты, позволяющие моделировать структурно-сложные гибридные системы.

Их можно условно разделить на три группы:

1) пакеты "блочного моделирования":

2) пакеты "физического моделирования":

3) пакеты, ориентированные на схему гибридного автомата.

Это деление является условным прежде всего потому, что все эти пакеты имеют много общего: позволяют строить многоуровневые иерархические функциональные схемы, поддерживают в той или иной степени технологию ООМ, предоставляют сходные возможности визуализации и анимации. Отличия обусловлены тем, какой из аспектов сложной динамической системы сочтен наиболее важным.

Пакеты "блочного моделирования" ориентированы на графический язык иерархических блок схем. Элементарные блоки являются либо предопределенными, либо могут конструироваться с помощью некоторого специального вспомогательного языка более низкого уровня. Новый блок можно собрать из имеющихся блоков с использованием ориентированных связей и параметрической настройки. В число предопределенных элементарных блоков входят чисто непрерывные, чисто дискретные и гибридные блоки.

К достоинствами этого подхода следует отнести, прежде всего, чрезвычайную простоту создания не очень сложных моделей даже не слишком подготовленным пользователем. Другим достоинством является эффективность реализации элементарных блоков и простота построения эквивалентной системы. В то же время при создании сложных моделей приходится строить довольно громоздкие многоуровневые блок-схемы, не отражающие естественной структуры моделируемой системы. Другими словами, этот подход работает хорошо, когда есть подходящие стандартные блоки.

Пакеты "физического моделирования" позволяют использовать неориентированные и потоковые связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. Дискретная составляющая задается описанием дискретных событий (события задаются логическим условием или являются периодическими), при возникновении которых могут выполняться мгновенные присваивания переменным новых значений. Дискретные события могут распространяться по специальным связям. Изменение структуры уравнений возможно только косвенно через коэффициенты в правых частях (это обусловлено необходимостью символьных преобразований при переходе к эквивалентной системе).

Подход очень удобен и естественен для описания типовых блоков физических систем. Недостатками являются необходимость символьных преобразований, что резко сужает возможности описания гибридного поведения, а также необходимость численного решения большого числа алгебраических уравнений, что значительно усложняет задачу автоматического получения достоверного решения.

Пакеты, основанные на использовании схемы гибридного автомата, позволяют очень наглядно и естественно описывать гибридные системы со сложной логикой переключений. Необходимость определения эквивалентной системы при каждом переключении заставляет использовать только ориентированные связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. К недостаткам следует также отнести избыточность описания при моделировании чисто непрерывных систем.

Заметим, что между вторым и третьим направлениями нет непреодолимой пропасти. В конце концов, невозможность из совместного использования обусловлена лишь сегодняшними вычислительными возможностями. В то же время, общая идеология построения моделей практически совпадает. В принципе, возможен комбинированный подход, когда в структуре модели должны выделяться составные блоки, элементы которых имеют чисто непрерывное поведение, и однократно преобразовываться к эквивалентному элементарному. Далее уже совокупное поведение этого эквивалентного блока должно использоваться при анализе гибридной системы.

Моделирование представляет собой построение математической модели. Для этого необходимо иметь строгое представление о цели функционирования исследуемой экономической системы и располагать информацией об ограничениях, которые определяют область допустимых значений управляемых переменных. Цель и ограничения должны быть представлены в виде функций от управляемых переменных. Анализ модели должен привести к определению наилучшего управляющего воздействия на объект управления при выполнении всех установленных ограничений.

Сложность реальных систем может сильно затруднить представление цели и ограничений в аналитическом виде. Несмотря на слишком большое число переменных и ограничений, которые на первый взгляд необходимо учитывать при анализе реальных ситуаций, лишь небольшая их часть оказывается существенной для описания исследуемых систем. Поэтому при моделировании систем прежде всего следует идентифицировать доминирующие переменные, параметры и ограничения.

Упрощенный образ реальной системы отличается от системы-оригинала тем, что в нем находят отражение только доминирующие факторы (переменные, ограничения, параметры), определяющие основную линию поведения реальной системы.

Модель, будучи дальнейшим упрощением образа системы-оригинала, представляет собой наиболее существенные для описания системы соотношения в виде целевой функции и совокупности ограничений.

Рассмотрим пример, чтобы пояснить различные уровни абстракции.

Процесс создания конечного продукта материального производства обычно состоит из нескольких этапов, которые можно представить в определенной хронологической последовательности - от замысла проектировщика(конструктора) до поставки потребителю.

Теперь предположим, что задача исследования состоит в определении “наиболее выгодного” для предприятия-изготовителя объема производства данной продукции. Рассматривая исследуемую производственную систему как единое целое, легко убедиться в том, что на объем производства может влиять большое число факторов. Приведем несколько примеров таких факторов, группируя их по соответствующим подразделениям предприятия.

1. Производственный отдел. Возможное время загрузки оборудования, последовательность технологических операций, выполняемых на оборудовании, объем незавершенного производства, количество бракованных изделий и производительность службы технического контроля.

2. Склад. Имеющиеся запасы сырья и материалов, ограничения запасов готовой продукции.

3. Отдел сбыта (маркетинга). Прогноз объемов реализации продукции, активность рекламной деятельности, возможности организационно-технической базы сбыта продукции, влияние конкуренции.

Учесть все эти факторы в модели, предназначенной для определения оптимального объема производства, довольно трудно. В этом случае пришлось бы ввести такие переменные, как распределение времени использования оборудования и рабочей силы, производительность службы технического контроля, а в качестве ограничений использовать данные, характеризующие мощность оборудования, фонд рабочего времени, предельно допустимый объем незавершенного производства, а также ограничения, связанные со сбытом продукции и хранением готовой продукции на складах. Пересечение всех этих факторов показывает, насколько сложны соотношения, которые пришлось бы использовать для того, чтобы выразить объем производства в виде функции от такого количества переменных.

Для формирования упрощенного абстрактного образа системы-оригинала следует рассматривать систему как единый объект, а не заниматься частными деталями анализируемой проблемы. По существу систему как единое целое можно рассматривать с точек зрения изготовителя и потребителя. В первом случае систему можно характеризовать ее производительностью, а во втором - объемом реализации продукции.

Производительность системы зависит от таких факторов, как располагаемое время использования рабочей силы и оборудования, последовательность технологических операций, наличие сырья.

Объем реализации продукции определяется ограничениями, присущими системе распределения готовой продукции, и прогнозом сбыта.

Упрощения, осуществляемые при переходе от системы оригинала к ее упрощенному образу, достигается за счет “объединения” нескольких первичных факторов в один фактор. Однако, следует помнить, что степень сложности модели всегда находится в обратной зависимости от степени упрощения реальной системы. Можно, например, принять допущение о том, что производительность системы и объем сбыта либо постоянны, либо зависят от времени. Очевидно, что в последнем случае необходимо разрабатывать более сложную модель.

Правил, определяющих переход от реальной системы к модели не существует. Сведение множества факторов, управляющих поведением системы, к относительно небольшому количеству доминирующих факторов и переход от упрощенного образа системы-оригинала к модели - в большей мере искусство, чем наука. Степень адекватности построенной модели реальной системе зависит прежде всего от творческих способностей и интуиции разработчика. Ясно, что проявление этих чисто индивидуальных качеств нельзя отразить в рамках формализованных правил построения моделей.

Несмотря на то что строгие предписания о том, как следует разрабатывать модель, сформулировать невозможно, все же полезно иметь некоторое представление о возможных типах моделей, их общей структуре и характеристиках.