Динамика - Лекция, раздел Философия, Часть 1. МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Раздел Механики, Исследующий Законы И Причины, Вызывающие Движение Тел, Т.е. ...
Раздел механики, исследующий законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил.
В основе классической (ньютоновской) механики лежат три закона динамики, сформулированные Ньютоном в 1687г.
Законы Ньютона (как и все остальные физические законы) возникли в результате обобщения большого количества опытных фактов. Правильность их (хотя и для очень обширного, но все же ограниченного круга явлений) подтверждается согласием с опытом тех следствий, которые из них вытекают.
Ньютоновская механика достигла в течение двух столетий таких огромных успехов, что многие физики 19в. были убеждены в ее всемогуществе. Считалось, что объяснить любое физическое явление означает свести его механическому процессу, подчиняющемуся законам Ньютона. Однако с развитием науки обнаружились новые факты, которые не укладывались в рамки классической механики. Эти факты получили свое объяснение в новых теориях – специальной теории относительности (СТО) и квантовой механике.
В СТО, созданной Эйнштейном в 1905г., подвергались радикальному пересмотру ньютоновские представления о пространстве и времени. Этот пересмотр привел к созданию релятивистской механики («механики больших скоростей»). Новая механика не привела, однако, к полному отрицанию старой ньютоновской механики. В пределе при скоростях малых по сравнению со скоростью света уравнения релятивистской механики переходят в уравнения классической механики.
Таким образом, классическая механика вошла в релятивистскую механику как ее частный случай и сохранила свое прежнее значение для описания движений, происходящих со скоростями значительно меньшими скорости света (v<<c).
Аналогично обстоит дело и с соотношением между классической и квантовой механикой, возникшей в 20х годах XXв. в результате развития физики атома. Уравнения квантовой механики также дают в пределе (для масс много больших по сравнению с массами атомов) уравнения классической механики. Следовательно, классическая механика вошла и в квантовую механику в качестве ее предельного случая.
Таким образом, развитие науки не перечеркнуло классическую механику, а лишь показало ее ограниченную применимость. Классическая механика, основываясь на законах Ньютона, является механикой тел больших (по сравнению с массой атомов) масс, движущихся с малыми (по сравнению со скоростью света) скоростями.
3.1. I закон Ньютона (закон инерции).
ОПРЕДЕЛЕНИЕ: Всякое тело находится (сохраняет) в состоянии покоя или равномерного и прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.
Свойство тел сохранять состояние покоя или равномерного прямолинейного движения называется инерцией.
Опыт показывает, что при одинаковом воздействии различные тела по-разному изменяют свою скорость. Иными словами, одинаковые воздействия вызывают у различных тел различные ускорения. Следовательно, величина ускорения, приобретаемого телом, зависит не только от величины воздействия, но и от некоторого собственного свойства тела. Это свойство тела характеризуют физической величиной, называемой массой.
ОПРЕДЕЛЕНИЕ: Масса тела – это физическая величина, характеризующая меру инерции тела.
Масса тела – это, прежде всего, его свойство откликаться определенным ускорением на действие определенного воздействия (силы).
Замечание: Различие понятий (терминов): «инерция» и «инертность».
Оба эти термина означают свойства тел, проявляющиеся в инерциальных системах отсчета. Но…
1. Свойство «инерции» заключается в том, что тела при отсутствии внешних воздействий сохраняют скорость своего движения неизменной (включая и случай =0). Инерцией обладают любые тела, но для нее не вводится никакой количественной меры. Инерция – неизмеряемое свойство.
2. Свойство «инертности» состоит как раз в изменении скорости тел (в появлении ускорения) под действием внешних сил. Разные тела по-разному изменяют свои скорости под действием одной и той же силы, т.е. свойство инертности у них неодинаково. Инертность – свойство измеряемое. Масса и является мерой, количественной характеристикой этого свойства.
Первый закон Ньютона выполняется не во всякой системе отсчета. Как известно, характер движения зависит от выбора системы отсчета. Рассмотрим две системы отсчета, движущиеся друг относительно друга с некоторым ускорением. Если относительно одной из них тело покоится, то относительно другой оно, очевидно, будет двигаться с ускорением. Следовательно, I закон Ньютона не может одновременно выполняться в обеих системах.
ОПРЕДЕЛЕНИЕ: Система отсчета, в которой выполняется I закон Ньютона, называется инерциальной.
Сам закон называют иногда законом инерции. Система отсчета, в которой I закон Ньютона не выполняется, называется неинерциальной системой отсчета. Инерциальных систем отсчета существует бесконечное множество. Любая система отсчета, движущаяся относительно некоторой инерциальной системы отсчета прямолинейно и равномерно (=const) будет также инерциальной.
Опытным путем установлено, что гелиоцентрическая система отсчета (т.е. система отсчета, центр которой совмещен с Солнцем, а оси направлены на соответствующим образом выбранные звезды) является инерциальной. Строго говоря, система отсчета, связанная с Землей не является инерциальной, т.к. движется с ускорением относительно гелиоцентрической системы (Земля движется относительно Солнца по криволинейной траектории и совершает вращение вокруг своей оси). Однако ускорение такой системы настолько мало, что в большинстве случаев ее можно считать практически инерциальной.
Пример: 1. центростремительное ускорение суточного вращения экваториальных областей земной поверхности составляет около 0,03 м/с2.
2. центростремительное ускорение годового вращения Земли вокруг Солнца не превышает 0,001м/с2.
Анализ неинерциальных движений приводит к заключению, что внешней причиной неинерциального движения тел в инерциальной системе отсчета всегда является воздействие на него со стороны других объектов.
Для характеристики этого воздействия вводится понятие силы.
ОПРЕДЕЛЕНИЕ: Сила – физическая величина, характеризующая воздействие, оказываемое на тело со стороны других тел, в результате которого тело приобретает ускорение и являющаяся количественной мерой этого воздействия.
Сила – величина векторная и направлена так же, как вектор вызываемого этой силой ускорения.
В отличие от кинематики, где ускорение тела считается заданной величиной, в динамике устанавливается причинная и количественная связь ускорения с действующей на тело силой. Обобщение опытных фактов, позволяющих сделать это, составляет содержание II закона Ньютона.
Все темы данного раздела:
Несколько вводных замечаний о предмете физики.
Мир, окружающий нас материален: он состоит из вечно существующей и непрерывно движущейся материи.
Материей в широком смысле этого слова называется все, что реально существует в природе и м
Механика
Простейшим видом движения материи является механическое движение.
ОПРЕДЕЛЕНИЕ: механическое движение – изменение взаимного расположения тел или их частей относительно друг друга в простран
Кинематика движения материальной точки. Характеристики движения.
Положение материальной точки M в пространстве в данный момент времени может быть задано радиус-вектором (см. рис
Вектор скорости. Средняя и мгновенная скорость.
Движения различных тел различаются тем, что тела за одинаковые промежутки (равные) времени проходят различные по
Путь при неравномерном движении.
За малый промежуток времени Dt перемещение графически изображается в виде прямоугольника, высота которого равна
Ускорение при криволинейном движении (тангенциальное и нормальное ускорение).
Если траектория движения материальной точки представляет собой кривую линию, то такое движение мы будем называть криволинейным.
При таком движении
Угловая скорость.
ОПРЕДЕЛЕНИЕ: Вращательным движением будем называть такое движение, при котором все точки абсолютно твердого тела описывают окружности, центры которых лежат на одной прямой, называемой осью в
Угловое ускорение.
Вектор угловой скорости может изменяться как за счет изменения скорости вращения тела вокруг оси (в этом случае
Связь между линейной и угловой скоростью.
Пусть за малый промежуток времени Dt тело повернулось на угол Dj (рис. 2.17). Точка, находящаяся на расстоянии R от оси, проходит при этом путь DS = R×Dj. По определению
II закон Ньютона.
ОПРЕДЕЛЕНИЕ: Ускорение всякого тела прямо пропорционально действующей на него силе и обратно пропорционально массе тела:
III закон Ньютона.
Всякое действие тел друг на друга носит характер взаимодействия: если тело M1 действует на тело M2 с некоторой силой f12, то и тело M2 в свою очер
Импульс. Закон сохранения импульса.
В механической системе, состоящей из нескольких тел, существуют как силы взаимодействия между телами системы, которые называются внутренними, так и силы взаимодействия этих тел с телами, не входящи
Работа и энергия.
Пусть тело, на которое действует сила , проходит, двигаясь по некоторой траектории путь S. При этом сила либо из
Мощность.
На практике имеет значение не только величина совершенной работы, но и время, в течение которого она совершается. Из всех механизмов наиболее выгодными являются те, которые за меньшее время выполня
Энергия.
Из опыта известно, что тела часто оказываются в состоянии совершать работу над другими телами.
ОПРЕДЕЛЕНИЕ: Физическая величина, характеризующая способность тела или системы тел совершать
Кинетическая энергия тела.
Рассмотрим простейшую систему, состоящую из одной частицы (материальной точки).
Напишем уравнение движения частицы
Потенциальное поле сил. Силы консервативные и неконсервативные.
Если частица (тело) в каждой точке пространства подвержена воздействию других тел, то говорят, что эта частица (тело) находится в поле сил.
Пример: 1. Частица вблизи повер
Потенциальная энергия тела в поле сил тяжести (в поле тяготения Земли).
Поле тяготения Земли есть силовое поле, поэтому любое движение тела в силовом поле сопровождается совершением работы силами этого поля.
Для определения потенциальной энергии тела, находяще
Потенциальная энергия в гравитационном поле (в поле всемирного тяготения).
Установленный Ньютоном закон всемирного тяготения гласит:
ОПРЕДЕЛЕНИЕ: Гравитационная сила или сила тяготения – это сила, с которой две материальные точки притягивают друг др
Потенциальная энергия упруго деформированного тела.
Потенциальной энергией может обладать не только система взаимодействующих тел, но и отдельно взятое упруго деформированное тело (например, сжатая пружина, растянутый стержень и т.п.). В этом случае
Закон сохранения энергии.
Без нарушения общности рассмотрим систему, состоящую из двух частиц массами m1 и m2. Пусть частицы взаимодействуют друг с другом с силами
Поступательное движение твердого тела.
ОПРЕДЕЛЕНИЕ: Абсолютно твердым телом будем называть такое тело, деформациями которого в условиях рассматриваемой задачи можно пренебречь.
или
Абсолютно твердым телом
Вращательное движение твердого тела.
ОПРЕДЕЛЕНИЕ: Вращательным движением твердого тела будем называть такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и ой же прямой, называемой
Момент импульса тела.
Для описания вращательного движения потребуется ещё одна величина , называемая моментом импульса.
Снача
Основное уравнение динамики вращательного движения.
Рассмотрим систему материальных точек, каждая из которых может перемещаться, оставаясь в одной из плоскостей, проходящих через ось Z (рис. 4.15). Все плоскости могут вращаться вокруг оси Z с углово
Кинетическая энергия вращающегося твердого тела.
1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс m
Работа внешних сил при вращательном движении твердого тела.
Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z.
Пусть на массу действ
Линии и трубки тока.
Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном тече
Уравнение Бернулли.
Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим
Силы внутреннего трения.
Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольн
Ламинарное и турбулентное течения.
При достаточно малой скорости движения жидкости наблюдается слоистое или ламинарное течение, когда слои жидкости скользят относительно друг друга не перемешиваясь. При ламинарном т
Течение жидкости в круглой трубе.
При движении жидкости в круглой трубе ее скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая
Движение тел в жидкостях и газах.
При движении симметричных тел в жидкостях и газах возникает сила лобового сопротивления, направленная противоположно скорости движения тела. При ламинарном обтекании шара линии ток
Законы Кеплера.
К началу 17 столетия большинство ученых окончательно убедилось в справедливости гелиоцентрической системы мира. Однако ученым того времени не были ясны ни законы движения планет, ни причины, опреде
Опыт Кавендиша.
Первой успешной попыткой определения «g» были измерения, осуществленные Кавендишем (1798г.), который применил дл
Напряженность гравитационного поля. Потенциал гравитационного поля.
Гравитационное взаимодействие осуществляется через гравитационное поле. Это поле проявляет себя в том, помещенное в него другое тело оказывается под действием силы. Об «интенсивности» гравитационно
Принцип относительности.
В разд. 2.1. для механических систем был сформулирован следующий принцип относительности: во всех инерциальных системах отсчета все законы механики одинаковы. Никакими (меха
Постулаты специальной (частной) теории относительности. Преобразования Лоренца
Эйнштейн сформулировал два постулата, лежащие в основе специальной теории относительности:
1. Физические явления во всех инерциальных системах отсчета протекают одинаково. Никакими
Следствия из преобразований Лоренца.
Самым неожиданным следствием теории относительности является зависимость времени от системы отсчета.
Длительность событий в разных системах отсчета. Пусть в некоторой точк
Интервал между событиями.
В теории относительности вводят понятие события, которое определяется местом, где оно произошло, и временем, когда оно произошло. Событие можно изобразить точкой в воображаемом четырехмерном
Уравнение гармонического колебательного движения.
Пусть на некоторое тело массы “m” действует квазиупругая сила , под действием которой тело приобретает ускорени
Графическое изображение гармонических колебаний. Векторная диаграмма.
Сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций) значительно облегчается и становится наглядным, если изображать колебания гра
Скорость, ускорение и энергия колеблющегося тела.
Вернемся к формулам для смещения x, скорости v и ускорения a гармонического колебательного процесса.
Пусть имеем тело массы «m», которое совершает под действием квазиу
Гармонический осциллятор.
Систему, описываемую уравнением , где
Физический маятник.
ОПРЕДЕЛЕНИЕ: Физическим маятником будем называть твердое тело, способное совершать колебания вокруг непо
Затухающие колебания.
При выводе уравнения гармонических колебаний считалось, что колеблющаяся точка находится под действием только квазиупругой силы. Во всякой реальной колебательной системе всегда имеются силы сопроти
Вынужденные колебания. Резонанс.
Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, пер
Предмет и методы молекулярной физики.
Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя и так называемых молекулярно-кинетических представлений. Согласно этим представлениям любое тело
Термодинамическая система. Параметры состояния системы. Равновесное и неравновесное состояние.
ОПРЕДЕЛЕНИЕ: Термодинамической системой называется совокупность тел, обменивающихся энергией, как друг с другом, так и с окружающими телами.
Примером системы может служить жидкость
Идеальный газ. Параметры состояния идеального газа.
ОПРЕДЕЛЕНИЕ: Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия: а) соударения молекул такого газа происходят как соударения упругих шаров, размеры
Газовые законы.
Если разрешить уравнение состояния идеального газа
относительно какого-либо из параметров, н
Физический смысл универсальной газовой постоянной.
Универсальная газовая постоянная имеет размерность работы, отнесенной к 1 молю и температуре 1°К.
Основное уравнение кинетической теории газов
Если в предыдущем разделе применялся термодинамический метод исследования, то в этом разделе будет использован статистический метод исследования молекулярных процессов. На основании исследования со
Барометрическая формула. Распределение Больцмана
Давно известно, что давление газа над поверхностью Земли уменьшается с высотой. Атмосферное давление на некотор
Максвелловское распределение молекул по скоростям
В результате столкновений молекулы обмениваются скоростями, а в случае тройных и более сложных столкновений молекула может иметь временно очень большие и очень малые скорости. Хаотичное движение пр
Явления переноса. Длина свободного пробега молекул
В предыдущих разделах мы рассматривали свойства тел, находящихся в тепловом равновесии. Данный раздел посвящен процессам, с помощью которых происходит установление состояния равновесия. Такие проце
Явление диффузии
Диффузией называют процесс взаимного проникновения молекул соприкасающихся веществ, обусловленный тепловым движением. Этот процесс наблюдается в газах, жидкостях и твердых т
Явление теплопроводности и вязкости
Явление теплопроводности вещества определяет многие очень важные технические процессы и широко применяется в разнообразных расчетах. Эмпирическое уравнение теплопроводности было получено французски
Внутренняя энергия идеального газа
Важной величиной в термодинамике является внутренняя энергия тела. Любое тело кроме механической энергии может обладать запасом внутренней энергии, которая связана с механическим движением атомов и
Работа и теплота. Первое начало термодинамики
Внутренняя энергия газа (и другой термодинамической системы) может изменяться в основном за счет двух процессов: совершения над газом работы
Работа газовых изопроцессов
Пусть газ заключен в цилиндрический сосуд, закрытый плотно пригнанным и легко скользящим поршнем (рис.10.3). Пр
Молекулярно-кинетическая теория теплоемкостей
Теплоемкостью тела C называют физическую величину, численно равную количеству тепла, которое необходимо сообщить телу для нагревания его на один градус. Если сообщить телу к
Адиабатический процесс
Наряду с изопроцессами существует адиабатический процесс, широко распространенный в природе. Адиабатическим процессом называют процесс, протекающий без теплообмена с внеш
Круговые обратимые процессы. Цикл Карно
Механические процессы обладают замечательным свойством обратимости. Например, брошенный камень, описав некоторую траекторию, упал на землю. Если его бросить обратно с той же скоростью, то он опишет
Понятие об энтропии. Энтропия идеального газа
Для цикла Карно из формул (10.17) и (10.21) легко получить соотношение
Q1 /T1 - Q2 /T2 = 0. (10.22)
Величину Q/T называют
Второе начало термодинамики
Понятие энтропии помогло строго математически сформулировать закономерности, позволяющие определить направление тепловых процессов. Огромная совокупность опытных фактов показывает, что для
Статистическое толкование второго начала термодинамики
Состояние макроскопического тела (т.е. тела, образованного огромным числом молекул) может быть задано с помощью объема, давления и температуры. Данное макроскопическое состояние газа с определенным
Уравнение Ван-дер-Ваальса
Поведение реальных газов при их малых плотностях хорошо описывается уравнением Клапейрона:
Критическое состояние вещества
Важное значение уравнения Ван-дер-Ваальса заключается в том, что оно предсказывает особо
Эффект Джоуля-Томсона
В реальном газе между молекулами действуют силы притяжения и отталкивания. Силы притяжения обусловлены дипольным взаимодействием молекул. Некоторые молекулы могут представлять собой постоянные дипо
Новости и инфо для студентов