рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электронно-дырочный переход. Транзистор

Электронно-дырочный переход. Транзистор - Лекция, раздел Философия, Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория В Современной Электронной Технике Полупроводниковые Приборы Играют Исключител...

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n–p-переход) – это область контакта двух полупроводников с разными типами проводимости.

В полупроводнике n-типа основными носителями свободного заряда являются электроны; их концентрация значительно превышает концентрацию дырок (nn >> np). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn). При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 4.14.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение Uз, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых.

n–p-переход обладает удивительным свойством односторонней проводимости.

 
Рисунок 4.14.1. Образование запирающего слоя при контакте полупроводников p- и n-типов.

Если полупроводник с n–p-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от n–p-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через n–p-переход практически не идет. Напряжение, поданное на n–p-переход в этом случае называют обратным. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p-области и дырок в n-области.

Если n–p-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать n–p-переход, создавая ток в прямом направлении. Сила тока через n–p-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

Полупроводниковые диоды используются в выпрямителях для преобразования переменного тока в постоянный. Типичная вольт-амперная характеристика кремниевого диода приведена на рис. 4.14.2.

 
Рисунок 4.14.2. Вольт-амперная характеристика кремниевого диода. На графике использованы различные шкалы для положительных и отрицательных напряжений.

Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными диодами – малые размеры, длительный срок службы, механическая прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры. Кремниевые диоды, например, могут удовлетворительно работать только в диапозоне температур от –70 °C до 80 °C. У германиевых диодов диапазон рабочих температур несколько шире.

Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами. Название происходит от сочетания английских слов: transfer – переносить и resistor – сопротивление. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: p–n–p-транзисторы и n–p–n-транзисторы. Например, германиевый транзистор p–n–p-типа представляет собой небольшую пластинку из германия с донорной примесью, т. е. из полупроводника n-типа. В этой пластинке создаются две области с акцепторной примесью, т. е. области с дырочной проводимостью (рис. 4.14.3). В транзисторе n–p–n-типа основная германиевая пластинка обладает проводимостью p-типа, а созданные на ней две области – проводимостью n-типа (рис. 4.14.4).

Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э). Обычно объем коллектора превышает объем эмиттера. В условных обозначениях разных структур стрелка эмиттера показывает направление тока через транзистор.

 
Рисунок 4.14.3. Транзистор структуры p–n–p.

 

 
Рисунок 4.14.4. Транзистор структуры n–p–n.

Оба n–p-перехода транзистора соединяются с двумя источниками тока. На рис. 4.14.5 показано включение в цепь транзистора p–n–p-структуры. Переход «эмиттер–база» включается в прямом (пропускном) направлении (цепь эмиттера), а переход «коллектор–база» – в запирающем направлении (цепь коллектора).

Пока цепь эмиттера разомкнута, ток в цепи коллектора очень мал, так как для основных носителей свободного заряда – электронов в базе и дырок в коллекторе – переход заперт.

 
Рисунок 4.14.5. Включение в цепь транзистора p–n–p-структуры.

При замыкании цепи эмиттера дырки – основные носители заряда в эмиттере – переходят из него в базу, создавая в этой цепи ток Iэ. Но для дырок, попавших в базу из эмиттера, n–p-переход в цепи коллектора открыт. Большая часть дырок захватывается полем этого перехода и проникает в коллектор, создавая ток Iк. Для того, чтобы ток коллектора был практически равен току эмиттера, базу транзистора делают в виде очень тонкого слоя. При изменении тока в цепи эмиттера изменяется сила тока и в цепи коллектора.

Если в цепь эмиттера включен источник переменного напряжения (рис. 4.14.5), то на резисторе R, включенном в цепь коллектора, также возникает переменное напряжение, амплитуда которого может во много раз превышать амплитуду входного сигнала. Следовательно, транзистор выполняет роль усилителя переменного напряжения.

Однако, такая схема усилителя на транзисторе является неэффективной, так как в ней отсутствует усиление сигнала по току, и через источники входного сигнала протекает весь ток эмиттера Iэ. В реальных схемах усилителей на транзисторах источник переменного напряжения включают так, чтобы через него протекал только небольшой ток базы Iб = Iэ – Iк. Малые изменения тока базы вызывают значительные изменения тока коллектора. Усиление по току в таких схемах может составлять несколько сотен.

В настоящее время полупроводниковые приборы находят исключительно широкое применение в радиоэлектронике. Современная технология позволяет производить полупроводниковые приборы – диоды, транзисторы, полупроводниковые фотоприемники и т. д. – размером в несколько микрометров. Качественно новым этапом электронной техники явилось развитие микроэлектроники, которая занимается разработкой интегральных микросхем и принципов их применения.

Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в 1 см2 может содержать несколько сотен тысяч микроэлементов.

Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в области электронной вычислительной техники. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры.

 

– Конец работы –

Эта тема принадлежит разделу:

Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория

Молекулярно кинетическая теория... Основные положения МКТ В основе... Электродинамика Лекция...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электронно-дырочный переход. Транзистор

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения МКТ
Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В осно

Основное уравнение МКТ газов. Температура
Простейшей моделью молекулярно-кинетической теории является модель идеального газа. В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие меж

Уравнение состояния идеального газа. Изопроцессы лекция№2
Соотношение   p = nkT,   связывающее давление газа с его температурой и концентрацией молекул, получ

Внутренняя энергия. Количество теплоты. Работа в термодинамике лекция №3 Основы термодинамики
Термодинамика – это наука о тепловых явлениях. В противоположность молекулярно-кинетической теории, которая делает выводы на основе представлений о молекулярном строении вещества, термодинамика исх

Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары лекция №4
Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом, жидком и газообразном. Переход из одного состояния в другое называется фазовым переходом. Испа

Свойства жидкостей. Поверхностное натяжение Лекция №5
Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла

Кристаллические и аморфные тела Лекция №6
По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические тела. Характерной особенностью аморфных тел является их изотропно

Деформация
В твердых телах – аморфных и кристаллических – частицы (молекулы, атомы, ионы) совершают тепловые колебания около положений равновесия, в которых энергия их взаимодействия минимальна. При увеличени

Электрический заряд. Закон Кулона
Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием. Электрический заряд – это физическая величина, характе

Электрическое поле Работа, совершаемая силами электрического поля. Лекция № 8
По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силов

Работа в электрическом поле. Потенциал
При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 4.4.1):  

Проводники и диэлектрики в электрическом поле
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри веще

Электроемкость. Конденсаторы Лекция №9
Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и

Энергия электрического поля
Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрический ток. Закон Ома Лекция №10
Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных за

Последовательное и параллельное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно. При последовательном соединении проводников (рис. 4.9.1) сила тока во всех проводниках одинакова:

Правила Кирхгофа для разветвленных цепей
Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей. В

Работа и мощность электрического тока .Закон Ома для полной цепи. Лекция №11
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном учестке совершает

Электрический ток в металлах
Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса

Электрический ток в полупроводниках
По значению удельного электрического сопротивления полупроводники занимают промежуточное место между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элеме

Электрический ток в электролитах Лекция №12
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отри

Магнитное взаимодействие токов. Магнитное поле. Действие магнитного поля на проводник с током. Лекция №14
Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. Он появился в Европе приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружен

Сила Лоренца
Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,   F = IBΔl sin α

Магнитное поле в веществе
Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаи

Электромагнитная индукция. Правило Ленца. Лекция № 16
Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении в

Самоиндукция. Энергия магнитного поля
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом конт

Электромагнитные колебания и волны. Лекция №17
Колебательные и волновые процессы, изучаемые в различных разделах физики, проявляют удивительную общность закономерностей. Колебания груза на пружине и процессы в электрическом колебательном контур

Квазистационарные процессы. RC- и RL-цепи
В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно, то есть неизменно во времени. Электромагнитное поле в таких цепях состоит из электр

RLC-контур. Свободные колебания
В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свобо

Вынужденные колебания. Переменный ток. Лекция №18
Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями. Вынужденные колебания, в отличие от собственных колеб

Закон Ома для цепи переменного тока. Мощность. Лекция № 19
Когда были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:  

Трансформаторы. Передача электрической энергии
  Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или п

Электромагнитные волны . Изобретение радио А.С.Поповым Лекция №20
Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики

Основные законы геометрической оптики
  Основные законы геометрической оптики были известны задолго до установления физической природы света. Закон прямолинейного распространения света: в оптически однородной сре

Зеркала
Простейшим оптическим устройством, способным создавать изображение предмета, является плоское зеркало. Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зерк

Развитие представлений о природе света Лекция №21
Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы)

Интерференция света. Лекция № 22
Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при определенных условиях при наложении двух или нескольких световых пучков. Интенсивн

Дифракция света
Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может захо

Спектральные приборы. Дифракционная решетка Лекция №23
В состав видимого света входят монохроматические волны с различными значениями длин волн. В излучении нагретых тел (нить лампы накаливания) длины волн непрерывно заполняют весь диапазон видимого св

Опыт Ньютона
Ньютон направил белый луч на стеклянную призму. Как только видимый свет попадает в призму, он преломляется и разлагается в радужную полоску, которая называется спектр, Бел

Фотоэффект. Фотоны Лекция № 24
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было вы

Физика атома и атомного ядра Лекция № 25
Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена, но только в XVIII веке трудами А. Лавуазье, М. В. Ломоносова и других ученых была доказана реальн

Опыт Резерфорда. Ядерная модель атома
Первая попытка создания модели атома на основе накопленных экспериментальных данных принадлежит Дж. Томсону (1903 г.). Он считал, что атом представляет собой электронейтральную систему шарообразной

Квантовые постулаты Бора
Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Эта попытка оказалась несостоятельной. Классичес

Методы регистрации заряженных частиц
В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. изображен счетчик Гейгера, предназначенный для регистрации заряженных частиц. Он состоит из стеклянно

Энергия связи ядер Лекция № 26
Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удержи

Элементарные частицы
Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги