ЛЕКЦИЯ № 28 Тема: Биохимия нервной ткани

ЛЕКЦИЯ № 28

Тема: Биохимия нервной ткани

Нервная система: определение понятия

Функции нервной системы:

1. Воспринимает информацию из внешней и внутренней среды;

2. Перерабатывает полученную информацию;

3. Хранит полученную информацию;

4. Генерирует сигналы, обеспечивающие ответные реакции, адекватные действующим раздражителям;

Благодаря этому, нервная система координирует взаимодействие организма с внешней средой, координирует функции различных органов и тканей и осуществляет интеграцию частей организма в единое целое, является центральным органом поддержания гомеостаза.

 

КЛАССИФИКАЦИЯ НЕРВНОЙ СИСТЕМЫ

Анатомически нервную систему условно подразделяют на:

1. центральную нервную систему (ЦНС), которая включает головной и спинной мозг;

2. периферическую нервную систему (ПНС), к которой относят периферические нервные узлы, нервы и нервные окончания.

Физиологически, в зависимости от характера иннервации органов и тканей, нервную систему разделяют на:

1. соматическую (анимальную) нервную систему, которая регулирует преимущественно функции произвольного движения.

2. автономную (вегетативную) нервную систему, которая регулирует деятельность внутренних органов, сосудов и желез. Она осуществляет адаптационно-трофическую функцию.

а). симпатическая нервная система (СНС);

б). парасимпатическая нервная система (ПСНС).

СНС и ПСНС различаются по локализации центров в мозге и периферических узлов, а также характером влияния на внутренние органы.

КЛАССИФИКАЦИЯ НЕРВНОЙ ТКАНИ

Функциональной тканью нервной системы является нервная.

Нервная ткань – это высокоспециализированная ткань, обладающая возбудимостью и проводимостью, она состоит из нейронов и нейроглии (макро- и микроглия).

По клеточному составу нервную ткань делят на серое и белое вещество;

Серое веществообразованоскоплением нейронов, тонких немиелинизированных нервных волокон и нейроглии (астроциты, олигодендроциты), которое в ЦНС называется ядром, а в ПНС – ганглием (узлом).

Белое вещество представлено совокупностью аксонов, покрытых миелиновой оболочкой и глиальных клеток (астроцитов). Такие пучки нервных волокон в ЦНС носят название трактов, в ПНС они образуют нервы. Для каждого тракта, характерно преобладание волокон, образованных однотипными нейронами.

КЛЕТКИ НЕРВНОЙ ТКАНИ

Нейрон

Нейрон - это функциональная единица нервной системы, он состоит из тела (сомы), многочисленных ветвящихся коротких отростков – дендритов и одного длинного отростка – аксона, длина которого может достигать несколько десятков сантиметров. Аксоны и дендриты оканчиваются синаптическими образованиями. Дендриты, проводят нервный импульс по направлению к телу клетки, а аксон, проводит его от сомы. Таким образом, дендриты и аксоны отвечают соответственно за получение и передачу сигнала. Тело нейрона является трофическим центром, нарушение целостности которого ведет клетку к гибели.

Тело нейрона окружено плазматической мембраной – плазмалеммой. Плазмалемма выполняет структурную функцию, служит барьером для поддержания внутриклеточного состава (клеточные органеллы, везикулы нейромедиаторов, метаболиты), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение нейромедиатора) роли в создании мембранного потенциала, транспорте веществ через мембрану и передаче нервного импульса.

Внутри нейрон заполнен нейроплазмой (цитоплазмой). Объем нейроплазмы аксона и дендритов, может в несколько раз превышать объем нейроплазмы в теле нейрона. Нейроплазма содержит все основные органеллы клетки.

В теле нейрона и проксимальных отрезках дендритов под плазмалеммой находится так называемая подповерхностная мембранная структура. Это - цистерны, которые расположены параллельно поверхности плазмалеммы и отделены от нее очень узкой светлой зоной. Предполагают, что цистерны играют важную роль в метаболизме нейрона.

ЭПС нейрона хорошо развита. Мембраны ЭПС связаны с плазмалеммой и оболочкой ядра нейрона.

В комплексе Гольджи сосредоточены главным образом липидные компоненты клетки. Митохондрии нейронов содержат меньше ферментов, участвующих в процессах окисления ЖК и АК, чем митохондрии других тканей. Лизосомы в нейроне обнаруживаются постоянно.

В нейроплазме содержатся специальные органоиды нейрофибриллы и вещество Ниссля (тигроид). Тигроид представляет собой глыбки базофильного вещества, состоящего из РНК и белков, располагающиеся вокруг ядра и заходящие в основания дендритов. Нейрофибриллы – тонкие нити, расположенные в разных направлениях и формирующие густую сеть; они состоят из очень тонких (70 – 200 А) протофибрилл. Нейрофибриллы служат поддерживающим остовом нейрона.

Аксоплазматический транспорт

Транспорт нейроплазмы идет с затратой АТФ с помощью микротрубочек, состоящих из тубулина. Ассоциацию тубулина в микротрубочки контролируют белки… Различают анте- и ретроградный аксональный транспорт, в первом случает… Ретроградный транспорт удаляет продукты деградации синапсов, переносит ферменты, а также субстраты, поглощенные…

Глиальные клетки

В ЦНС выделяют 2 вида глии: 1. Макроглия · Астроцитарная глия обеспечивает микроокружение нейронов, выполняет опорную и трофическую функции в сером и белов…

ХИМИЧЕСКИЙ СОСТАВ НЕРВНОЙ ТКАНИ

В связи с различием строения, серое и белое вещество нервной ткани отличаются по химическому составу.

Химический состав серого и белого вещества головного мозга человека

Компонент Серое вещество, % Белое вещество,%
Вода 84,0 70,0
Сухой остаток 16,0 30,0
Белки 8,0 9,0
Липиды 5,0 17,0
Минеральные вещества 1,0 2,0

· В сером веществе воды больше, чем в белом.

· В сером веществе белки составляют половину плотных веществ, а в белом веществе – одну треть.

· В белом веществе на липиды приходится более половины сухого остатка, а в сером – лишь около 30%.

Белки нервной ткани

В головном мозге на белки приходиться 40% сухой массы. В настоящее время выделено более 100 белковых фракций нервной ткани (методами хроматографии, электрофореза и экстракции буферными растворами).

В нервной ткани содержатся простые и сложные белки.

Простые белки

· Нейроальбуминыосновные растворимые белки (89-90%) нервной ткани, являются белковым компонентом фосфопротеинов, в свободном состоянии встречаются редко. Легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими небелковыми компонентами.

· Нейроглобулины,содержатся в небольшом количестве (в среднем 5%).

· Катионные белки- основные белки (рН 10,5 – 12,0), например, гистоновые. При электрофорезе они движутся к катоду.

· Нейросклеропротеины (опорные белки).Например,нейроколлагены, нейроэлластины, нейростромины и др. Они составляют 8-10% от всех простых белков нервной ткани, локализованы в основном в белом веществе головного мозга и ПНС, выполняют структурно-опорную функцию.

Сложные белки

Сложные белки нервной ткани представлены: нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т.д.

· Гликопротеинысодержат олигосахаридные цепи, которые придают специфические отличия клеточным мембранам. Нейроспецифические гликопротеины участвуют в формировании миелина, в процессах клеточной адгезии, нерорецепции и взаимном узнавании нейронов в онтогенезе и при регенерации.

· Протеолипидыв наибольших количествах содержатся в миелине и в небольших количествах - в синаптических мембранах и синаптических пузырьках.

Нейроспецифические белки

· Белок S-100 (или кислый белок), содержит много глутаминовой и аспарагиновой кислот, гомологичен мышечному тропонину С, находиться в цитоплазме… · Белок 14-3-2 -кислый белок, который преимущественно локализован в нейронах… · Белок Р-400находится в мозжечке мышей, где, возможно, отвечает за двигательный контроль.

Ферменты нервной ткани

В мозговой ткани содержится большое количество ферментов, катализирующих обмен белков, жиров и углеводов. Также цитоплазма нейронов содержит ферменты метаболизма посредников и медиаторов.

Мозговая ткань характеризуется высокой активностью: ЛДГ (ЛДГ1,ЛДГ2), АСТ, альдолазы, креатинкиназы (ВВ), гексокиназы, малатдегидрогеназы, глутаматдегидрогеназы, холинэстеразы, кислой фосфатазы, моноаминоксидазы. В глиальных клетках преобладает ЛДГ5, а в нейронах - ЛДГ1.

Для мозга характерна так же высокая активность ферментов метаболизма циклических нуклеотидов, которые принимают участие в синаптической передаче нервного импульса.

Аминокислоты нервной ткани

Высокая концентрация АК в нервной ткани достигается путем их многоступенчатого активного и пассивного транспорта из плазмы крови. Сначала АК… Более 50% α-аминоазота головного мозга приходится на долю глутаминовой… В нервной ткани аминокислоты распределяются неравномерно, в основном это касается аминокислот, выполняющих функцию…

Липиды нервной ткани

В сером веществе фосфоглицериды составляют более 60% от всех липидов, а в белом – около 40%. В белом веществе содержится больше холестерина,… · Холестерин составляет около 25% от общего содержания липидов. При этом в… · Свободных жирных кислот в мозге мало, а этерефицированных жирных кислот в мозге очень много, в основном это…

Углеводы нервной ткани

По сравнению с другими тканями ткань мозга содержит мало глюкозы и гликогена. У новорожденных концентрация гликогена в мозге выше, чем у взрослых.

Олигосахариды составляют 2-10% массы плазматической мембраны, большая их часть связана с белками и меньшая с - гликолипидами. Практически все они локализованы на внешней поверхности плазматической мембраны и придают ей индивидуальность и специфичность.

Нуклеотиды нервной ткани

Большинство нейронов ЦНС диплоидны, а небольшая их часть в некоторых отделах ЦНС (клетки Пуркинье мозжечка) может содержать избыточное количество ДНК.

Особенностями хроматина нейронов являются необычно короткие нуклеосомные единицы, наличие редких вариантов гистонов, большое разнообразие негистоновых белков и высокая матричная активность.

Содержание РНК в нейронах велико, что связано с активным синтезом белка. Среднее отношение РНК/ДНК может достигать 50 и редко бывает ниже 3. В печени, поджелудочной железы, почках оно составляет 2-4,5.

Содержание цАМФ и цГМФ в головном мозге значительно выше, чем во многих других тканях. Уровень цАМФ в мозге составляет в среднем 1-2, а цГМФ – до 0,2 нмоль на 1г ткани.

Макроэргические соединения нервной ткани

Количество макроэргических соединений в нервной ткани невелико, их распределение примерно одинаково во всех отделах мозга. Макроэргические соединения представлены в основном креатинфосфатом и АТФ, на долю ГТФ, ЦТФ, УТФ приходиться менее 10% всех макроэргов. Содержание креатина и креатинфосфата более, чем в 2 раза превышает количество адениновых нуклеотидов. Количество АТФ в нервной ткани примерно такое же, как и в печени, зато АДФ и АМФ в мозге значительно ниже. Пиримидиновые основания не синтезируются в мозге, а поступают из печени.

Минеральные вещества нервной ткани

Na+, K+, Cu2+, Fe2+, Ca2+, Mg2+ и Mn2+ распределены в головном мозге относительно равномерно между серым и белым веществом. Содержание фосфора в белом веществе выше, чем в сером. В мозговой ткани существует дефицит анионов, который покрывается за счет белков и липидов (у липидов нервной ткани важная роль в ионном балансе).

Белковый и липидный состав миелина, белого и серого вещества человека

Строение нервного волокна. Миелиновая оболочка

Из аксонов нейронов образуются нервные волокна. Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находится аксоплазма с нейрофибриллами, митохондриями и синаптическими пузырьками.

В зависимости от строения оболочек, окутывающих аксоны, нервные волокна делят на: безмиелиновые (безмякотные) и миелиновые (мякотные).

Безмиелиновое волокно

Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток.

Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы.

Миелиновое волокно

Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута… Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает… Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной…

Химический состав миелина

Белковый состав миелина периферической и центральной нервной системы различен. Миелин ЦНС содержит три белка: 1. Протеолипид, составляет 35 – 50% от общего содержания белка в миелине,… 2. Основной белок А1, составляет 30% от общего содержания белка в миелине, имеет молекулярную массу 18кДа, растворим…

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В НЕРВНОЙ ТКАНИ

Энергетический обмен нервной ткани

Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4… Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная… В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга…

Обмен углеводов нервной ткани

Нервная ткань характеризуется высоким углеводным обменом, в котором преобладает катаболизм глюкозы. Так как нервная ткань инсулиннезависима, с высокой активностью гексокиназы (имеет низкую константу Михаэлиса Ментона) и низкой концентрацией глюкозы, глюкоза поступает из крови в нервную ткань постоянно, даже если в крови мало глюкозы и отсутствует инсулин.

Активность ПФШ нервной ткани невелика. НАДФН2 используется при синтезе нейромедиаторов, аминокислот, липидов, гликолипидов, компонентов нуклеиновых кислот и для работы антиоксидантной системы.

Высокая активность ПФШ наблюдается у детей в период миелинизации и при травмах головного мозга.

Обмен белков и аминокислот нервной ткани

Скорость синтеза и распада белков в разных отделах головного мозга неодинакова. Белки серого вещества больших полушарий и белки мозжечка отличаются…   Аминокислоты в нервной ткани используется как:

Серосодержащие аминокислоты

Метионин является источником метильных групп и на 80% используется для синтеза белка.

Цистатионин важен для синтеза сульфитидов и сульфатилрованных мукополисахаридов.

 

Обмен азота нервной ткани

Непосредственным источником аммиака в головном мозге служит непрямое дезаминирование аминокислот с участием глутаматдегидрогеназы, а так же дезаминирование с участием АМФ–ИМФ цикла.

Обезвреживание токсичного аммиака в нервной ткани происходит с участием α-кетоглутарата и глутамата.

Липидный обмен нервной ткани

В нейронах серого вещества из фосфоглицеридов наиболее интенсивно обновляются фосфотидилхолины и особенно фосфотидилинозитол, который является… Обмен липидов в миелиновых оболочках протекает медленно, очень медленно… СПИНОМОЗГОВАЯ ЖИДКОСТЬ – КАК ДИАГНОСТИЧЕСКИЙ ПОКАЗАТЕЛЬ СОСТОЯНИЯ НЕРВНОЙ ТКАНИ

Химический состав спинномозговой жидкости

· вода составляет 99%, сухой остаток - около 1%. · почти нет белка и мало аминокислот. Некоторые аминокислоты, например… · меньше содержится глюкозы, холестерина и практически отсутствуют ТГ и фосфолипиды.

БИОХИМИЧЕСКИЕ ОСНОВЫ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

Механизмы передачи нервного импульса по нервному волокну

Na+, K+–АТФаза за счет энергии АТФ постоянно перекачивает Na+ наружу и К+ внутрь, создавая трансмембранный градиент концентраций этих ионов.… Натриевые и калиевые каналы могут пропускать Na+ и К+ по градиентам их… Работа Na+,K+–АТФазы, натриевых и калиевых каналов может создавать на мембране потенциал покоя и потенциал действия. …

Нервный импульс

В миелинизированном нервном волокне натриевые и калиевые ионные каналы расположены в немиелинизированных участках перехватов Ранвье, где мембрана…   Синапс: виды, строение и функции

Классификация синапсов

1. По локализации: центральные (ЦНС) и периферические (нервно-мышечные, нейросекреторные синапсы вегетативной НС).

2. По развитию в онтогенезе: стабильные (безусловный рефлекс) и динамические (условный рефлекс) синапсы.

3. По конечному эффекту: тормозные и возбуждающие.

4. По механизму передачи сигнала: электрические, химические и смешанные.

Химические синапсы делят:

а). по форме контакта: терминальные (колбообразное соединение) и переходящие (варикозное расширение аксона).

б). по природе медиатора: холинергические (медиатор ацетилхолин), адренергические (норадреналин), дофаминергические (дофамин), ГАМК-ергические (ГАМК), глициергические (глицин), глутаматергические (глутамат), аспартатергические (аспартат), пептидергические (пептиды), пуринергические (АТФ).

Электрические синапсы осуществляют передачу сигнала путем прямого прохождения потенциалов действия. Электрические синапсы сравнительно редки, их роль в ЦНС пока неясна. Передача сигнала между нейронами идет через щелевые контакты (щель около 2нм) с ионными мостиками-каналами. В противоположность химическому синапсу, сигнал через электрический синапс передается быстро и сразу в два направления.

Химический синапс осуществляет передачу сигнала с помощью специальных молекул – нейромедиаторов.

Нейромедиатор- это соединение, которое синтезируется и запасается в нейроне, высвобождается при проведении нервного импульса и специфически связывается постсинаптической мембраной, где оно активирует или ингибирует постсинаптическую клетку посредством деполяризации и гиперполяризации.

Химический синапс состоит 1). из пресинаптического элемента, который ограничен пресинаптической мембраной. Пресинаптический элемент содержит митохондрии и особые пузырьки – синаптические везикулы, в которых хранится медиатор; 2). постсинаптического элемента, который ограничен постсинаптической мембраной. Постсинаптическая мембрана содержит рецепторы к медиатору; 3). внесинаптической области; 4). синаптической щели (толщина 50 нм), заполненной базальной мембраной.

 

Свойства химического синапса

Среди рецепторов постсинаптической мембраны выделяют: 1). Рецепторы, связанные с ионными каналами (рецептор ГАМК); 3). Рецепторы, активирующие инозитолтрифосфатную систему;

Стадии химической синаптической передачи

2. Загрузка нейромедиатора в везикулу. В случае, когда 1 и 2 стадии протекают в теле нервной клетки, происходит аксоплазматический транспорт… 3. Нервный импульс, приходящий от тела нейрона, вызывает деполяризацию… 4. Кальций поступает в цитоплазму пресинаптического элемента и активирует цитоскелет, что вызывает слияние 100-200…

Адренэргнические синапсы

Катехоламины синтезируются в синапсе из тирозина, который образуется из фенилаланина, либо поступает с пищей. Синтезируемые катехоламины запасаются в везикулах. Кроме катехоламинов,… Под действием нервного импульса везикулы сливаются с пресинаптической мембраной, а катехоламины высвобождаются в…

Болезнь Паркинсона

Это заболевание связано с дегенеративным изменением в отделе ЦНС, ответственного за двигательный контроль. Обычно оно наступает во второй половине… Заболевание поражает главным образом черное вещество и полосатое тело мозга –… В качестве терапии таким больным назначают оральное применение ДОФА предшественника дофамина. Только небольшая доза…

Холинэргические синапсы

Ацетилхолин - важный медиатор вегетативной нервной системы, он присутствует во всех ганглиях СНС и ПСНС, в постганглионарных нервных волокнах всех… Синапсы преганглионарного типа стимулируются никотином и ацетилхолином,…

Никотиновый холинэргический синапс

1. Ацетил-СоА образуется в митохондриях из ПВК под действием пируватдегидрогеназы; 2. Холин образуется главным образом в печени из фосфатидилхолина (не… 3. Холин активно транспортируется в нервные клетки.

Серотонинэргические синапсы

Серотонин образуется из триптофана путем гидроксилирования в 5 положении и последующего декарбоксилирования. Затем серотонин упаковывается в секреторные гранулы, и под действием… Рецепторы серотонина бывают 2 типов М и Д, которые имеют не менее 15 под­типов.

Аминокислотные медиаторы

Аминокислотные медиаторы подразделяются на две группы:

· возбуждающие кислые (глутамат и аспартат)

· ингибиторные нейтральные (ГАМК, глицин, β-аланин и таурин).

ГАМК

ГАМК ингибиторный медиатор. Он содержится в сером веществе головного мозга, в клетках Пуркинье мозжечка, многих ингибиторных промежуточных нейронов, например, полосатого тела, спинного мозга и коры.

ГАМК образуется и разрушается в ГАМК-шунте ЦТК.

Ингибирование заключается в том, что он открывает хлорные каналы, вызывает гиперполяризацию и тормозит возбудимость постсинаптической мембраны эффекторной клетки.

Если ингибирующее действие ГАМК-эргических нейронов снимается, то это приводит к неконтролируемой активности связанных с этим медиатором нервных связей. Антагонисты ГАМК, например пикротоксин и бикукуллин, являются, следовательно, мощными конвульсантами.

Вещества, усиливающие ингибиторный эффект ГАМК, являются релаксантами и транквилизаторами.

На работу ГАМК-реактивных синапсов влияют различные вещества:

· Производные гидразина ингибируют синтез ГАМК.

· Антогонисты ГАМК: бициклофосфаты, норборнан.

· Пресинапсические блокаторы высвобождения ГАМК: тетанотоксин.

 

Глицин

Глицин - основной ингибиторный медиатор спинного мозга и ствола головного мозга. Он открывает хлорные каналы, вызывает гиперполяризацию и тормозит возбудимость постсинаптической мембраны.

Глутамат

Выделено пять рецепторов глутамата. NMDA, АМРА и каинатные рецепторы связаны с Са2+-каналами. Под действием… ACPD – рецепторы активируют инозитолтрифосфатную систему. Под действием глутамата они выпускают Са2+ из ЭПС в в…

Энкефалины и другие нейропептиды

Среди энкефалинов выделены Met- и Leu-энкефалин. Были найдены три предшественника: проопиомеланокортин, проэнкефалин и… Проопиомеланокортин содержит по 1 копии АКТГ, β-липотропина, β-эндорфина, Met-энкефалина. β-липотропин,…

Вещество Р

Вещество Р – нейромедиатор пресинаптических окончаний С-волокон первичных сенсорных нейронов, образующих синапсы на сенсорных нейронов второго порядка в задних рогах спинного мозга. Он участвует в восприятии болевых сигналов.

ХИМИЧЕСКИЕ ОСНОВЫ БОЛИ

В основе любой боли лежит раздражение болевых или полимодальных рецепторов, т.е. боль - прежде всего ощущение.

Но, поскольку это ощущение влечет за собой стимуляцию различных отделов нервной и эндокринной системы, боль как явление у человека включает эмоциональный, вегетативный, двигательный и поведенческий компоненты, а значит, представляет собой основанное на болевом ощущении психофизиологическое состояние организма. В шестидесятые годы нашего столетия было обнаружено, что два вида болевой чувствительности имеют различный проводниково-рецепторный аппарат и центральные адреса [9].

Болевые рецепторы

Специфическими первичными болевыми рецепторами (нонирецепторами) служат два других типа нервных окончаний – тонкие миелинизированные… Боли при нейрохирургических операциях максимальны в момент рассечения мозговых… Болевые рецепторы претендуют на уникальное положение в человеческом теле. Это единственный тип чувствительных…

Привыкание к лекарствам и лекарственная зависимость.

Применение опиатов в медицине ограничено из-за того, что их болеутоляющее действие со временем уменьшается, что делает необходимым постоянное… Более высокая концентрация фермента требует более высокой концентрации опиата…  

VI.НЕЙРОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЛАСТИЧНОСТИ И ПАМЯТИ.

После открытия способа кодирования генетической информации в ДНК (генетической памяти) и успешного изучения иммунологической памяти были предприняты… Как показали эксперименты, существуют кратковременная память с относительно… Вначале интенсивно исследовался вопрос, не приводит ли научение к изменениям состава рибонуклеиновых кислот (РНК) в…