рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

История развития оптики.

История развития оптики. - раздел Науковедение, Введение в специальность Оптика – Учение О Природе Света, Световых Явлениях И Взаимодействии Света С В...

Оптика – учение о природе света, световых явлениях и взаимодействии света с веществом. И почти вся ее история – это история поиска ответа: что такое свет?

Одна из первых теорий света – теория зрительных лучей – была выдвинута греческим философом Платоном около 400 г. до н. э. Данная теория предполагала, что из глаза исходят лучи, которые, встречаясь с предметами, освещают их и создают видимость окружающего мира. Взгляды Платона поддерживали многие ученые древности и, в частности, Евклид (3 в до н. э.), исходя из теории зрительных лучей, основал учение о прямолинейности распространения света, установил закон отражения.

В те же годы были открыты следующие факты:

– прямолинейность распространения света;

– явление отражения света и закон отражения;

– явление преломления света;

– фокусирующее действие вогнутого зеркала.

Древние греки положили начало отрасли оптики, получившей позднее название геометрической.

Наиболее интересной работой по оптике, дошедшей до нас из средневековья, является работа арабского ученого Альгазена. Он занимался изучением отражения света от зеркал, явления преломления и прохождения света в линзах. Альгазен впервые высказал мысль о том, что свет обладает конечной скоростью распространения. Эта гипотеза явилась крупным шагом в понимании природы света.

В эпоху Возрождения было совершено множество различных открытий и изобретений; стал утверждаться экспериментальный метод, как основа изучения и познания окружающего мира.

На базе многочисленных опытных фактов в середине XVII века возникают две гипотезы о природе световых явлений:

– корпускулярная, предполагавшая, что свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами;

– волновая, утверждавшая, что свет представляется собой продольные колебательные движения особой светоносной среды – эфира – возбуждаемой колебаниями частиц светящегося тела.

Все дальнейшее развитие учения о свете вплоть до наших дней – это история развития и борьбы этих гипотез, авторами которых были И. Ньютон и Х. Гюйгенс.

Основные положения корпускулярной теории Ньютона:

1) Свет состоит из малых частичек вещества, испускаемых во всех направлениях по прямым линиям, или лучам, светящимся телом, например, горящей свечой. Если эти лучи, состоящие из корпускул, попадают в наш глаз, то мы видим их источник.

2) Световые корпускулы имеют разные размеры. Самые крупные частицы, попадая в глаз, дают ощущение красного цвета, самые мелкие – фиолетового.

3) Белый цвет – смесь всех цветов: красного, оранжевого, желтый, зеленый, голубой, синий, фиолетовый.

4) Отражение света от поверхности происходит вследствие отражения корпускул от стенки по закону абсолютного упругого удара.

 

5) Явление преломления света объясняется тем, что корпускулы притягиваются частицами среды. Чем среда плотнее, тем угол преломления меньше угла падения.

6) Явление дисперсии света, открытое Ньютоном в 1666 г., он объяснил следующим образом. Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет – смесь разнообразных корпускул – испытывает преломление, пройдя через призму. С точки зрения механической теории, преломления обязано силам со стороны частиц стекла, действующим на световые корпускулы. Эти силы различны для разных корпускул. Они наибольшие для фиолетового и наименьшие для красного цвета. Путь корпускул в призме для каждого цвета будет преломляться по- своему, поэтому белый сложный луч расщепится на цветные составляющие лучи.

7) Ньютон наметил пути объяснения двойного лучепреломления, высказав гипотезу о том, что лучи света обладают "различными сторонами" – особым свойством, обуславливающим их различную преломляемость при прохождении двоякопреломляющего тела.

Корпускулярная теория Ньютона удовлетворительно объяснила многие оптические явления, известные в то время. Ее автор пользовался в научном мире колоссальным авторитетом, и в скоре теория Ньютона приобрела многих сторонников во всех странах.

Основные положения волновой теории света Гюйгенса.

1) Свет – это распространение упругих периодичных импульсов в эфире. Эти импульсы продольны и похожи на импульсы звука в воздухе.

2) Эфир – гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Она невесома, не подчиняется закону всемирного тяготения, обладает большой упругостью.

3) Принцип распространения колебаний эфира таков, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность – фронт волны (принцип Гюйгенса).

Чем дальше волновой фронт от источника, тем более плоским он становится.

Световые волны, приходящие непосредственно от источника, вызывают ощущение видения.

Очень важным пунктом теории Гюйгенса явилось допущение конечности скорости распространения света. Используя свой принцип, ученому удалось объяснить многие явления геометрической оптики:

– явление отражения света и его законы;

– явление преломления света и его законы;

– явление полного внутреннего отражения;

– явление двойного лучепреломления;

– принцип независимости световых лучей.

Теория Гюйгенса давала такое выражение для показателя преломления среды:

 

Из формулы видно, что скорость света должна зависеть обратно пропорционально от абсолютного показателя среды. Этот вывод был противоположен выводу, вытекающему из теории Ньютона. Невысокий уровень экспериментальной техники XVII века исключал возможность установить, какая из теорий верна.

Многие сомневались в волновой теории Гюйгенса, но среди малочисленных сторонников волновых взглядов на природу света были М. Ломоносов и Л. Эйлер. С исследований этих ученых теория Гюйгенса начала оформляться как теория волн, а не просто апериодических колебаний, распространяющихся в эфире.

 

Взгляды на природу света в XIX-XX столетиях.

В 1801 году Т. Юнг выполнил эксперимент, который изумил ученых мира: S – источник света; Э – экран; В и С – очень узкие щели, отстоящие друг от друга на 1-2 мм.

По теории Ньютона на экране должны появиться две светлые полоски, на самом деле появились несколько светлых и темных полос, а прямо против промежутка между щелями В и С появилась светлая линия Р. Опыт показал, что свет явление волновое. Юнг развил теорию Гюйгенса представлениями о колебаниях частиц, о частоте колебаний. Он сформулировал принцип интерференции, основываясь на котором, объяснил явление дифракции, интерференции и цвета тонких пластинок.

Французский физик Френель соединил принцип волновых движений Гюйгенса и принцип интерференции Юнга. На этой основе разработал строгую математическую теорию дифракции. Френель сумел объяснить все оптические явления, известные в то время.

 

Основные положения волновой теории Френеля.

– Свет – распространение колебаний в эфире со скоростью , где модуль упругости эфира, r – плотность эфира;

– Световые волны являются поперечными;

– Световой эфир обладает свойствами упруго-твердого тела, абсолютно несжимаем.

При переходе из одной среды в другую упругость эфира не меняется, но меняется его плотность. Относительный показатель преломления вещества .

Поперечные колебания могут происходить одновременно по всем направлениям, перпендикулярным направлению распространению волны.

Работа Френеля завоевала признание ученых. Вскоре появился целый ряд экспериментальных и теоретических работ, подтверждающих волновую природу света.

В середине XIX века начали обнаруживаться факты, указывающие на связь оптических и электрических явлений. В 1846 г. М. Фарадей наблюдал вращения плоскостей поляризации света в телах, помещенных в магнитное поле. Фарадей ввел представление об электрическом и магнитном полях, как о своеобразных наложениях в эфире. Появился новый "электромагнитный эфир". Первым на эти взгляды обратил внимание английский физик Максвел. Он развил эти представления и построил теорию электромагнитного поля.

Электромагнитная теория света не зачеркнула механическую теорию Гюйгенса- Юнга- Френеля, а поставила ее на новый уровень. В 1900 г. немецкий физик Планк выдвинул гипотезу о квантовом характере излучения. Суть ее состояла в следующем:

– излучение света носит дискретный характер;

– поглощение происходит тоже дискретно-порциями, квантами.

Энергия каждого кванта представляется по формуле E=hn , где h – постоянная Планка, а n – это частота света.

Через пять лет после Планка вышла работа немецкого физика Эйнштейна о фотоэффекте. Эйнштейн считал:

– свет, еще не вступивший во взаимодействие с веществом, имеет зернистую структуру;

– структурным элементом дискретного светового излучения является фотон.

В 1913 г. датский физик Н. Бор опубликовал теорию атома, в которой объединил теорию квантов Планка-Эйнштейна с картиной ядерного строения атома.

Таким образом, появилась новая квантовая теория света, родившаяся на базе корпускулярной теории Ньютона. В роли корпускулы выступает квант.

Основные положения.

– Свет испускается, распространяется и поглощается дискретными порциями – квантами.

– Квант света – фотон несет энергию, пропорциональную частоте той волны, с помощью которой он описывается электромагнитной теорией E=hn .

– Фотон, имеет массу ( ), импульс и момент количества движения ( ).

– Фотон, как частица, существует только в движении скорость которого – это скорость распространения света в данной среде.

– При всех взаимодействиях, в которых участвует фотон, справедливы общие законы сохранения энергии и импульса.

– Электрон в атоме может находиться только в некоторых дискретных устойчивых стационарных состояниях. Находясь в стационарных состояниях, атом не излучает энергию.

– При переходе из одного стационарного состояния в другое атом излучает (поглощает) фотон с частотой , (где Е1 и Е2 – энергии начального и конечного состояния).

С возникновением квантовой теории выяснилось, что корпускулярные и волновые свойства являются лишь двумя сторонами, двумя взаимосвязанными проявлениями сущности света. Они не отражают диалектическое единство дискретности и континуальности материи, выражающейся в одновременном проявлении волновых и корпускулярных свойств. Один и тот же процесс излучения может быть описан, как с помощью математического аппарата для волн, распространяющихся в пространстве и во времени, так и с помощью статистических методов предсказания появления частиц в данном месте и в данное время. Обе эти модели могут быть использованы одновременно, и в зависимости от условий предпочтение отдается одной из них.

Достижения последних лет в области оптики оказались возможными благодаря развитию, как квантовой физики, так и волновой оптики. В наши дни теория света продолжает развиваться.

Волновые свойства света и геометрическая оптика.

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть понятны в рамках геометрической оптики, которая оперирует понятием отдельных световых лучей, подчиняющихся известным законам преломления и отражения и независимых друг от друга. Для понимания более сложных явлений нужна физическая оптика, рассматривающая эти явления в связи с физической природой света. Физическая оптика позволяет вывести все законы геометрической оптики и установить границы их применимости. Без знания этих границ формальное применение законов геометрической оптики может в конкретных случаях привести к результатам, противоречащим наблюдаемым явлениям. Поэтому нельзя ограничиваться формальным построением геометрической оптики, а необходимо смотреть на нее как на раздел физической оптики.

Понятие светового луча можно получить из рассмотрения реального светового пучка в однородной среде, из которого при помощи диафрагмы выделяется узкий параллельный пучок. Чем меньше диаметр этих отверстий, тем уже выделяемый пучок, и в пределе, переходя к отверстиям сколь угодно малым, можно казалось бы получить световой луч как прямую линию. Но подобный процесс выделения сколь угодно узкого пучка (луча) невозможен вследствие явления дифракции. Неизбежное угловое расширение реального светового пучка, пропущенного через диафрагму диаметра D, определяется углом дифракции j ~l /D. Только в предельном случае, когда l =0, подобное расширение не имело бы места, и можно было бы говорить о луче как о геометрической линии, направление которой определяет направление распространения световой энергии.

Таким образом, световой луч – это абстрактное математическое понятие, а геометрическая оптика является приближенным предельным случаем, в который переходит волновая оптика, когда длина световой волны стремится к нулю.

 

– Конец работы –

Эта тема принадлежит разделу:

Введение в специальность

Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Тульский государственный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: История развития оптики.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

По дисциплине
    «Введение в специальность»     Направление подготовки: 200400 «Оптотехника» Профиль подготовки: «Оптико-электронные при

Область профессиональной деятельности
Областью профессиональной деятельности бакалавра по направлению подготовки 200400 с профилем подготовки «Оптико-электронные приборы и системы» является исследование, разработка, подготовка и

Основные курсы лекций краткая характеристика. Организация обучения.
    Основные читаемые курсы лекций.   Механика Материаловедение и технология конструкционных материалов

Строение глаза
На рисунке 2.1. изображен разрез глазного яблока и показаны основные детали глаза.   Глаз представляет собой шаровидное тело (глазное яблоко), почти полностью покрытое непроз

Аккомодация
Аккомодация - это способность глаза приспосабливаться к четкому различению предметов, расположенных на разных расстояниях от глаза. Аккомодация происходит путем изменения кривизны поверхно

Строение сетчатки
Сетчатая оболочка - это сложное переплетение нервных клеток и нервных волокон, соединяющих нервные клетки между собой и связывающих глаз с корой головного мозга. Основными светочувствительными элем

Спектральная чувствительность
Оптические приборы, работающие совместно с глазом, имеют дело с той частью потока излучения, которая воздействует на глаз. К ней относится видимая область спектра в интервале длин волн 380 - 780 нм

Адаптация
Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Различают темновую и световую адаптацию. Темновая адаптация происходит при переходе от больших ярк

Поле зрения глаза
Общее поле зрения глаза громадно, больше, чем у какого бы то ни было другого оптического прибора (125° по вертикали и 150° по горизонтали), но в действительности для ясного различения может быть ис

Предел разрешения глаза
В любой оптической системе существует некий конечный предел в отчетливости деталей. Для конструкторов-оптиков большой интерес представляет величина нижнего предела разрешения глазом двух соседних т

Дефекты зрения и их коррекция
Если дальняя точка глаза бесконечно удалена, то такой глаз называют нормальным или эмметропическим. При этом глаз хорошо различает предметы и вдали, и вблизи. Это означает, что оптический аппарат г

Близорукость
Причин близорукости может быть две. Первая - удлиненное глазное яблоко при нормальной преломляющей силе глаза. Другая причина - слишком большая оптическая сила оптической системы глаза (более 60 ди

Дальнозоркость
Дальнозоркость вызывается слабой оптической силой оптической системы глаза для данной длины глазного яблока (либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при

Астигматизм
Причина астигматизма лежит либо в неправильной, несферичной форме роговицы (в разных сечениях глаза, проходящих через ось, радиусы кривизны неодинаковы), либо в нецентричном по отношению к оптическ

Оптическая система
Оптическая система - совокупность оптических сред, разделенных оптическими поверхностями, и содержащая диафрагмы. Оптическая система предназначена для формирования изображения посредством перераспр

Характеристики предмета и изображения
Предмет - это совокупность точек, из которых выходят лучи, попадающие в оптическую систему. Вся возможная совокупность точек образует пространство предметов. Оптическая система делит все п

Зрачковые характеристики
Через оптическую систему проходят не все лучи, которые исходят от предмета. Ограничение размера пучков лучей - результат совместного действия всех имеющихся в оптической системе диафрагм. Однако мо

Спектральные характеристики
Спектральные характеристики необходимы для согласования интервала длин волн, которые излучает предмет и в котором образуется изображение. Обычно все расчеты хода лучей в оптической системе делают д

Передаточные характеристики
Передаточные характеристики показывают, как прибор преобразует предмет в изображение. Воздействие оптической системы на исходящее от предмета излучение сводится прежде всего к преобразован

Масштабные передаточные характеристики
Масштабные передаточные характеристики описывают передачу оптической системой размеров и формы предмета, то есть преобразование координат на предмете в координаты на изображении. Обобщенно

Энергетические передаточные характеристики
Энергетические передаточные характеристики описывают передачу прибором энергии предмета. Поскольку через оптическую систему проходят не все лучи, исходящие из предмета, и поскольку в самой оптическ

Структурные передаточные характеристики
Изображающие приборы с одинаковым увеличением и светосилой могут давать изображения различного качества в смысле передачи тонкой структуры предмета (более или менее резкие, с большим или меньшим ко

Фотоаппараты
Фотоаппарат - это, пожалуй, самый распространенный оптический пробор. В наше время фотоаппарат есть практически у каждого. Причем современные компактные фотоаппараты настолько просты в использовани

Относительное отверстие фотообъектива
Относительное отверстие - это абсолютное значение отношения диаметра апертурной диафрагмы к заднему фокусному расстоянию объектива: (4.3) Поскольку величина, рассчитанная

Глубина резкости фотообъектива
Поскольку у всех объективов есть аберрации, одна точка объекта всегда будет изображаться в виде кружка рассеяния. Однако при рассмотрении изображения глазом это не замечается, поскольку разрешающая

Широкоугольные (короткофокусные)
У широкоугольных объективов фокусное расстояние меньше диагонали кадра . Широкоугольные объективы характеризуются небольшим фокусным расстоянием в диапазоне приблизительно мм. Поле зрения у таких о

Узкоугольные (длиннофокусные)
Узкоугольные объективы имеют фокусное расстояние больше диагонали кадра , а поле зрения менее 40°. Фокусное расстояние таких объективов больше 50 мм. Обычно в качестве длиннофокусных используются о

Объективы с переменным фокусным расстоянием
Объективы с переменным фокусным расстоянием (ZOOM-объективы) позволяют получать изображения различного масштаба при неизменном расстоянии до объекта съемки. Например, с помощью объектива с диапазон

Системы фокусировки
В создании качественных снимков одну из важнейших функций выполняет система фокусировки фотоаппарата, то есть процесс наводки на резкость. В самых простых фотоаппаратах не осуществляется н

Экспозиция
Экспозиция - это количество света, попадающее на фотоматериал: < экспозиция > = < интенсивность света > ∙ < время воздействия >. Интенсивность света контро

Особенности цифровых фотоаппаратов
В последнее время все большее распространение получают цифровые фотоаппараты. В отличие от пленочных, у цифровых фотоаппаратов приемником изображения является ПЗС-матрица (прибор с зарядовой связью

Телескопическая система
Телескопическая система - оптическая система, с помощью которой можно рассматривать увеличенное изображение удаленного объекта. К числу таких приборов относятся бинокли, зрительные трубы,

Видимое увеличение телескопической системы
Видимое увеличение телескопической системы можно выразить через отношение фокусного расстояния объектива к фокусному расстоянию окуляра:   Если видимое увеличение положительн

Диаметры входного и выходного зрачков телескопической системы
Диаметр выходного зрачка определяется зрачком глаза: . (5.3) При наблюдении объектов через телескопический прибор глаз должен располагаться в плоскости выходного зрачка, тогда вес

Видимое увеличение лупы
Согласно определению, видимое увеличение лупы вычисляется как отношение тангенса угла, под которым виден предмет через лупу, к тангенсу угла, под которым наблюдается предмет невооруженным глазом с

Поле зрения лупы
На рис. 6.3 представлена лупа диаметром Dn. Зрачок глаза наблюдателя диаметром Dra расположен на расстоянии S' от лупы.   Размер поля 2а' в пространстве изображений определяе

Микроскоп
Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и ок

Увеличение микроскопа
Действие микрообъектива характеризуют его линейным увеличением:   где - фокусное расстояние микрообъектива, Δ - расстояние между задним фокусом объектива и пере

Разрешающая способность микроскопа
Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точ

Полезное увеличение микроскопа
Глаз наблюдателя сможет воспринимать две точки как раздельные, если угловое расстояние между ними будет не меньше углового предела разрешения глаза. Для того чтобы глаз наблюдателя мог полностью ис

Методы наблюдения
Обычно предметы, исследуемые под микроскопом, сами не светятся и, следовательно, нуждаются в постороннем освещении. Во многих случаях рассматриваемые предметы представляют собой тонкий срез прозрач

Метод светлого поля
Метод светлого поля в проходящем свете применяется при исследовании прозрачных препаратов, у которых различные участки структуры по-разному поглощают свет (тонкие окрашенные срезы животных и растит

Метод темного поля
Метод темного поля в проходящем свете применяется в биологии, коллоидной химии, минералогии и других областях для получения изображений прозрачных, непоглощающих, а поэтому и не видимых при наблюде

Метод исследования в поляризованных лучах
Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для так называемых анизотропных объектов, обладающих двойным лучепреломлением или отражением. Такими объектам

Метод фазового контраста
Метод фазового контраста дает возможность получать контрастные изображения прозрачных и бесцветных объектов. К числу таких объектов относятся, например, неокрашенные биологические препараты, нетрав

Световые микроскопы
Наиболее универсальными и потому наиболее распространенными являются биологические микроскопы (серии MULTISCOPE™, LABOROSCOPE™, INVERTOSCOPE™, производимые на ЛОМО). Современный биологический микро

Электронные микроскопы
Электронный микроскоп построен на таком же принципе получения изображения, как и оптический, но вместо видимого света в нем используется пучок электронов. Роль линз в электронном микроскоп

Сканирующие микроскопы
Сканирующие микроскопы основаны на другом принципе получения изображения, который позволяет преодолеть дифракционный предел разрешения. Принцип действия таких микроскопов основан на сканировании об

Осветительные системы
Осветительная система - это устройство, предназначенное для освещения несамосветящихся объектов. В большинстве случаев невозможно обеспечить требуемую освещенность предмета и ее равномерно

Конденсор
Если освещаемый предмет находится на конечном расстоянии, то для его освещения используют конденсор. Возможны два варианта оптической схемы конденсора. В первой схеме оптическая система пр

Осветительные оптические системы
Осветительные оптические системы позволяют улучшить качество освещения, задействовать большую часть светового потока источника и обеспечить более равномерное освещение объекта. Основными элементами

Прожектор
Прожектор - это оптическая система, концентрирующая световой поток источника света в узкий пучок для освещения удаленных объектов или для передачи сигналов на большие расстояния (рис. 7.7).

Осветительные системы проекционных приборов
Проекционные приборы предназначены для получения на экране изображений предметов требуемого масштаба. Основными устройствами проектора являются осветительное, обеспечивающее равномерное и интенсивн

Осветительные системы микроскопов
Так как большинство объектов, исследуемых с помощью микроскопа, не являются самосветящимися, для работы с ними требуются дополнительные источники света. Осветительная система микроскопа должна обес

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги