Основное уравнение электропроводности.

 

Способность любых материалов проводить электрический ток определяется наличием зарядов в нем и возможностью их движения. Можно написать наиболее общую формулу, для плотности тока j верную для любых сред,

j = S ni·qi·Vi (2.1)

Здесь i - тип или cорт заряда, (например электроны, ионы различных молекул, молионы, заряженные частицы и т.п.), ni - концентрация зарядов i-cорта, qi - значение заряда, Vi - скорость носителей заряда.

Чтобы разобраться с электропроводностью разных материалов, необходимо понять, какие в них плотности (концентрации) заряда, как они появляются и от чего они зависят, какие величины зарядов, с какими скоростями могут двигаться. Все это главные вопросы в изучении электропроводности.

Для всех сред, за исключением вакуума, скорость носителей пропорциональна напряженности поля

Vi = bi·E (2.2),

где bi - подвижность носителей заряда.

Подвижностью носителейзаряда называется коэффициент пропорциональности между скоростью носителей заряда Vi и напряженностью поля E.
Размерность подвижности - м2/(В с). Фактически подвижность численно равна скорости носителей заряда при напряженности поля 1 В/м.

Типы носителей заряда и их подвижность могут быть разными в различных средах. Подвижность носителей также сильно зависит от среды. Выражение (2.1) можно переписать, используя другие термины

j = s·E, s = S·ni·qi·mi (2.3)

Здесь s - удельная электропроводность. Еще один вариант записи выражения (2.3)

j = E/r (2.4)

где r - удельное сопротивление.

Нетрудно убедиться, что это все разные способы записи закона Ома в дифференциальной форме, для локальных параметров электрической цепи. Вы знаете, что для участка цепи закон Ома можно записать в виде I = U/R. Нетрудно убедиться, что для участка цепи, используя (2.4), площадь сечения участка S, длину l несложно получить классическое выражение для закона Ома. Для этого обе части в (2.4) умножаем на S, затем в правой части числитель и знаменатель умножаем на l. Получим в левой части ток, в числителе правой части напряжение, а если S перенести в знаменатель, то в знаменателе получим сопротивление. Таким образом мы доказали идентичность закона Ома в дифференциальной форме и в классической форме.

2.2. Электропроводность проводников, полупроводников и диэлектриков.

 

Анализ выражений (2.2 - 2.4) проведем с учетом природы и поведения носителей заряда в различных средах. В первую очередь необходимо выяснить механизмы появления и исчезновения зарядов.

Сначала необходимо рассмотреть электронное строение разных сред.
В газахэлектроны находятся на орбитах, принадлежащих конкретным атомам, или молекулам. Согласно квантовой модели атома, электрон может находиться только на определенных орбитах, которым соответствуют определенные, квантованные уровни энергии. На каждом уровне может находиться только один электрон. Электрон, находящийся на уровне, соответствующем самой дальней орбите, имеет самую слабую связь с ядром. Поэтому он легче всего ионизируется, т.е отрывается от ядра.

Энергия, которую надо сообщить электрону, находящемуся в основном состоянии, для отрыва от "материнского" иона называется энергией ионизации W.

Чтобы оторвать второй электрон, надо сообщить ему гораздо больше энергии. Это второй уровень ионизации. Существует несколько уровней возбуждения, т.е. если сообщить электрону, энергию меньшую, чем энергия ионизации, то электрон перейдет на какой-либо уровень возбуждения. Все уровни дискретны. Их можно схематически изобразить на рисунке.

При сближении, допустим, двух атомов с одинаковыми энергетическими уровнями до расстояния, когда орбиты перекрываются, произойдет объединение электронных систем, причем каждый уровень разделится на два, которые чуть-чуть отличаются один от другого. Дело в том, что согласно законам квантовой физики, в принципе в любой системе не может быть двух одинаковых уровней. Этот принцип называется принципом Паули. Когда объединятся три атома - будет три расщепленных уровня. Когда образуется кристалл - будет из каждого уровня образована некоторая область разрешенных энергий, которая называется зона. В принципе в зоне уровни практически сливаются и можно говорить о сплошном спектре. При этом верхняя часть зоны располагается выше, чем начальный уровень в одиночном атоме. Нижняя часть зоны располагается ниже, чем начальный уровень.

Для металлов зоны перекрываются и электроны могут свободно перемещаться по образцу. Ширина запрещенной зоны равна нулю. Поэтому подвижные электроны всегда существуют в металлах в большом количестве.

При протекании тока в металле электрическое поле невелико. Можно сделать простую оценку по выражению (2.2). Если взять медный провод сечением 2 мм2 и пропустить ток 5 А, то при удельном сопротивлении меди =1.7 10-8 Ом·м, получим E = j· r = 4·10-2 В/м, или E = 40 мВ/м. Если таким проводом протянуть питание на 1 км, то получим на нем падение напряжения 40 В.

В диэлектриках и полупроводниках, зонная структура такова, что существует запрещенная зона определенной ширины.