рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Элементарные процессы в газе. Лавина, стример, лидер.

Элементарные процессы в газе. Лавина, стример, лидер. - раздел Науковедение, Дисциплина входит в федеральный компонент цикла общепрофессиональных дисциплин и является обязательной для изучения   В Отличие От Слабых Электрических Полей, В Сильных Электричес...

 

В отличие от слабых электрических полей, в сильных электрических полях, характерных для работы электрической изоляции возникают новые явления, связанные с ионизационными процессами. Зависимость тока в газе при возрастании напряжения имеет три характерных участка (Рис.9.1.). Первый - линейная зависимость, второй - насыщение, третий участок - экспоненциальный рост. В этой области резко начинают расти и диэлектрические потери. Причина заключается в появлении носителей в промежутке за счет нового механизма - ударной ионизации.

 
  Рис.9.1. Зависимость тока в газе от напряжения.

 

Ударная ионизация -это физическое явление увеличения числа электронов и ионов в промежутке за счет столкновения электронов с повышенной энергией с нейтральными молекулами.

Откуда берутся электроны с повышенной энергией? Электроны появляются из электродов, либо в результате развала отрицательного иона, либо в результате термоионизации. В электрическом поле на электрон действует сила, в результате чего он ускоряется и набирает энергию. После прохождения расстояния l приобретаемая энергия составит DW=eEl. При этом в каждом акте ионизации затрачивается энергия ионизации W. Характерные значения энергии ионизации зависят от типа молекул и составляют для некоторых молекул: для цезия - 3.88 эВ, для азота - 14.5 эВ, для кислорода - 12.5 эВ

Ионизация электронами происходит, в том случае, если кинетическая энергия налетающего электрона mV2/2 > W по схеме e+A = A+ +e+e. Такой тип ионизации называется прямой ионизацией. Здесь А - молекула или атом газа.

Однако возможна ионизация и при меньшей энергии налетающего электрона, если она превышает энергию возбуждения Wвозб. Такой тип ионизации называется ассоциативной ионизацией. Она происходит в два этапа, с участием возбужденных молекул A*. Критерием начала ассоциативной ионизации является W>mV2/2> Wвозб. Возможны следующие схемы

e + A = A*+ e, A* + e=A+ + e + e

e + A= A* + e, A* + e=A + e + Wi, e + Wi + A=A+ + e

e + A=A* , A* + A*=A+ + e

Кроме ионизации молекул электронами возможна фотоионизация, термоионизация и автоионизация.

Фотоионизация - выбивание электронов фотонами при энергии фотона не меньше чем энергия ионизации.

Термоионизация - появление свободных электронов и ионов за счет тепловой энергии.Как можно оценить по выражениям (2.5.), (2.7.), она имеет заметные скорости при температуре несколько тысяч градусов.

Автоионизация - вырывание электрона из молекулы за счет действия сильного электрического поля.Заметную роль в появлении электронов автоионизация начинает играть в полях более 10 МВ/см. В реальной электрической изоляции всегда следует учитывать контакт диэлектрика с электродами. При этом возможно зарождение новых носителей заряда с участием электрода фактически с помощью тех же процессов, т.е. фотоэффекта, автоионизации, выбивания электрона положительным ионом.

Как развиваются ионизационные процессы? Первичный электрон, двигаясь в поле до столкновения с молекулой проходит определенное расстояние, называемое длиной свободного пробега.

Длина свободного пробега,- среднее расстояние, проходимое электроном или ионом до неупругого столкновения с молекулой.

lион = 1/(4pnr2) (9.1.)

lэлект = 1/(pnr2) = kT/(p ·p·r2)

где n- концентрация молекул, r- их радиус. Поскольку на каждом столкновении энергия теряется, то электрон не может бесконечно ускоряться и для каждого поля устанавливается определенная скорость V = b·E, где b - подвижность. Поскольку длина пробега иона в четыре раза меньше длины пробега электронов, то ударная ионизация ионами представляется маловероятной.

 

Табл.2.1. Подвижность некоторых носителей заряда в воздухе.

Тип носителей Подвижность носителей, 10-4 м2/(В·сек)
  воздух Водород Пары воды
m- 1.4 6.7 0.47
m+ 1.9 7.9 0,42

 

Для сравнения оценка подвижности электронов в воздухе 0.1 м2/(В·сек). Если энергия на длине пробега достаточна, после первого столкновения в объеме появляются дополнительно 1 электрон и ион, после второго - еще 2 электрона и 2 иона и т.д. Возникает так называемая лавина.

Электронная лавина - экспоненциальный рост количества носителей заряда в промежутке от катода к аноду за счет ударной ионизации молекул электронами n = n0 ead. Коэффициент a называется коэффициентом ударной ионизации. Он определяется донорно-акцепторными свойствами молекул жидкости, зависит от длины свободного пробега и резко зависит от напряженности поля. Для примера a = 18 1/cм при 30 кВ/см в воздухе.

Возникновение лавины - это еще не пробой. Необходимо, чтобы после прохождения лавины снова появился на катоде электрон. После этого возникает повторная лавина, затем еще лавина и т.д. Возникает самостоятельный многолавинный разряд. Для самостоятельности разряда необходимо вырывание электронов из катода положительными ионами, либо фотонами. Для оценки процесса вводят коэффициент g - т.н. вторичный ионизационный коэффициент. Для плотности электронного тока можно получить выражение j = j0×e/(1-g(ead-1)).

Условием самостоятельности разряда является появление на катоде хотя бы одного электрона после прохождения лавины:

1-g(ead-1) = 0 (9.2.)

Рис.9.2. Кривая Пашена для лавинного пробоя воздушного промежутка.

 

Поскольку коэффициент ударной ионизации зависит от напряженности поля, длины свободного пробега, а следовательно и давления из условия самостоятельности можно получить зависимость разрядного напряжения от внешних факторов, т.н. закон Пашена

U = f(pd), или в другом виде E/p = F(pd)

Здесь р - давление в газе, d - межэлектродный промежуток. Характерная кривая для пробоя газов приведена на рис.9.2. Она имеет минимум, значение которого и положение зависят от типа жидкости. Например для воздуха минимум пробивного напряжения составляет 300 В и он достигается вблизи pd~1 Па×м.

После пробоя газового промежутка он заполняется газоразрядной плазмой. В дальнейшем, в зависимости от мощности источника напряжения в промежутке развиваются различные виды разрядов. Если источник недостаточно мощен и давление невелико, то развивается тлеющий разряд. Этот разряд происходит во всем объеме, он имеет несколько характерных зон, основные из которых - темное пространство у катода и светящийся анодный столб. В темном пространстве электроны не имеют достаточно энергии для возбуждения молекул и поэтому нет свечения. В положительном столбе свечение вызвано излучением возбужденных молекул. Анодное свечение используется в люминесцентных лампах.

В случае мощного источника напряжения в промежутке после пробоя возникает дуговой разряд. Он характеризуется узким высокотемпературным каналом с высокой плотностью тока. В промышленности используется, в частности при электросварке.

Реально закон Пашена выполняется при не очень высоких давлениях, менее 1 атм и при малых зазорах, менее 1 мм. В больших промежутках при нормальном и повышенном давлении механизм пробоя меняется. Дело в том, что по мере удлинения лавины заряд вблизи фронта развивающейся лавины нарастает, напряженность электрического поля также все более и более возрастает. При некоторой напряженности возможно распространение разряда практически без участия электродов, за счет высокой напряженности. Происходит т.н. лавинно-стримерный переход, переход разряда из многолавинной формы в стримерную форму.

Стример - распространение с высокой скоростью в промежутке проводящего и светящегося плазменного локального образования.

Критерием перехода является выполнение условия ad = 20. Наглядно стример можно представить себе как светящийся шарик из плазмы, пробегающий от одного электрода к другому.

По мере удлинения промежутка, для длинных промежутков, возможно возникновение повторных стримеров в следе первого стримера. Это происходит потому, что место где прошел стример прогревается, плотность газа уменьшается, его электрическая прочность уменьшается, и в следе стримера могут возникать и распространяться новые стримеры со своим дополнительным нагревом и т.д. В результате локального повышения температуры в нем начинается термоионизация, и возрастает электропроводность, по значению выше перехода из диэлектрического состояния в проводящее (см. лекцию 8). Возникающая структура - лидер эквивалентна продвижению электрода в виде острия вглубь промежутка и способствует пробою длинных промежутков. В линиях электропередач реализуется именно этот вид пробоя.

Кроме того, для линий электропередач и других систем с резконеоднородным полем возникает особое явление разряда - корона. Это ионизационные процессы в локальной области вблизи электрода, чаще вблизи острых кромок электродов, где локальное электрическое поле может быть очень большим. Они приводят к потерям энергии, вносят шумы в радиочастотном диапазоне, выделяют озон и вредные оксиды азота.

Из эмпирических зависимостей электрической прочности газов от внешних факторов отметим следующие:

Рис.9.3. Зависимость электрической прочности воздуха при нормальных условиях от температуры

Температурная зависимость. Она обусловлена уменьшением плотности газов при росте температуры в условиях постоянного давления в соответствии с уравнением идеального газа PV = RT или n = P/kT. Для атмосферных условий влияние изменения и давления и температуры можно учесть так: E = E0d, где d -относительная плотность d = 0.386Р/(t + 273) (рис.9.3.).

Рис.9.4. Электрическая прочность воздушного промежутка 1 мм при высоких давлениях [2]/

Зависимость от давления. В условиях лавинного пробоя при pd<100 зависимость E(p) полностью эквивалентна кривой Пашена при d = const, т.е. также имеет минимум. При более высоких давлениях и длинах промежутков зависимость напряженности пробоя от давления имеет вид кривой с насыщением.

Зависимость от межэлектродного зазора. Для лавинного пробоя - аналогична кривой Пашена при р = const. При повышенных давлениях и малых зазорах E = 30 + A/d, где А - постоянная. Экспериментальные данные по пробою микронных зазоров показывают, что пробивная напряженность доходит до 200 кВ/см.
Зависимость от площади электродов
. Эта зависимость - чисто эмпирическая, имеет вид Е = Е0S-1/10 . Обычно эту зависимость объясняют наличием т.н. «слабых мест» на поверхности в виде неоднородностей, пленок и т.п., возрастание числа которых с ростом площади приводит к уменьшению электрической прочности.
Зависимость от влажности.
Эта зависимость проявляется только при разряде по поверхности раздела твердого изолятора и газа и выражается в уменьшении пробивного напряжения с ростом влажности, особенно при некотором уровне влажности, когда образуется пленка на поверхности.

Закономерности импульсного пробоя газов

При импульсном пробое газов увеличивается электрическая прочность относительно статического уровня. Это связано с конечным временем формирования разряда, которое, в свою очередь, обусловлено вероятностными характеристиками появления первичных электронов в промежутке, появления вторичных лавин и стримеров и т.д. Значения возникающего перенапряжения, т.е. увеличения пробивного напряжения относительно статического уровня может достигать двухкратного и более уровня.

 

9.2. Пробой жидкостей

 

Механизм электрического пробоя жидкостей вначале считался аналогичным механизму пробоя газов, считая жидкость плотным газом. Это основывалось на схожести картины разряда и на некоторой схожести разрядных зависимостей. Однако прямое, непосредственное применение газовых аналогий неправильно. Дело в том, что поведение электронов в жидкости кардинально отличается от поведения электронов в газе. Молекулы жидкости расположены столь близко друг другу, столь сильно взаимодействуют друг с другом, что электрон не может свободно двигаться и ускоряться в электрическом поле. В жидкости, кроме особо чистых сжиженных благородных газов, свободные электроны не могут существовать. При попадании свободных электронов в жидкость они сначала сольватируются, затем прилипают к нейтральным молекулам, образуя тем самым, отрицательные ионы. Поэтому понятие длины свободного пробега для жидкости невозможно ввести. Грубая оценка принципиальных ограничений электрической прочности может быть сделана из следующих соображений. Считаем, что электрон может ускоряться на протяжении межмолекулярного расстояния. Используя в качестве длины пробега lэлект межмолекулярное расстояние l можно получить оценку предельной электрической прочности жидкости:

eEпред l = W

Подставляя значения l ~ 5×10-10 м, W ~ 5 эВ, получим, что Eпред~ 1010 В/м. Эксперименты дают значения на 3-4 порядка меньше.

 

Рассмотрим характер некоторых эмпирических зависимостей электрической прочности жидких диэлектриков от различных факторов.

Зависимость от давления Электрическая прочность жидкостей зависит от давления достаточно слабо Е ~p1/6-1/12 . Иногда эту зависимость представляют в виде кривой с насыщением.

Температурная зависимость. Эта зависимость зачастую имеет достаточно сложный вид. Например для технически чистого трансформаторного масла электрическая прочность с ростом температуры от отрицательных температур до 30-40 °С уменьшается, затем возрастает в диапазоне до 50-70 °С и потом снова убывает. Для чистых жидкостей, как правило, наблюдаются три области зависимостей: при низких температурах электрическая прочность падает по мере роста температуры, затем очень слабо меняется и вблизи температуры кипения опять заметное падение. Объяснение этому будет дано ниже.

Зависимость от межэлектродного зазора. При малых зазорах пробивная напряженность поля резко нарастает с уменьшением зазора. Согласно экспериментальным данным в микронных зазорах пробивная напряженность доходит до 10 МВ/см.

Зависимость от площади Эта зависимость - чисто эмпирическая, имеет вид Е = Е0S-1/10 . Несомненно, что как и в случае пробоя газа она обусловлена вероятностными характеристиками инициирования пробоя.

Зависимость от влажности. Эта зависимость проявляется при малой влажности, менее 0.01% и выражается в резком уменьшении пробивного напряжения с ростом содержания воды.

Закономерности импульсного пробоя жидкости

При импульсном пробое жидкостей также увеличивается пробивное напряжение по мере укорочения длительности импульса. Электрическая прочность в наносекундном диапазоне может превышать 10-20 МВ/см.

Для практических целей предложено и широко используется обобщение эмпирических зависимостей в виде т.н. формулы Мартина.

(9.3)

где постоянная M зависит от сорта жидкости и имеет размерность МВ/см. В этом выражении длительность импульса t следует подставлять в микросекундах, давление в атм., а площадь электродов S - в см2. Постоянная А составляет 0.7 МВ/см для гексана и трансформаторного масла, 0.6 МВ/см для глицерина, 0.5 МВ/см для этилового спирта, 0.6 МВ/см для воды в случае пробоя с катода, 0.3 МВ/см в случае пробоя с анода.

Для пробоя жидкостей существуют специфические зависимости электрической прочности от наличия примесей. В принципе увеличение количества таких примесей, как механические твердые частицы, пузырьки, примеси, увеличивающие электропроводность приводит к уменьшению электрической прочности. Зачастую электрическая прочность является не физической характеристикой жидкости, а технологической характеристикой жидкости и способа ее приготовления.

 

Рис.9.5 Расчетная (пузырьковая модель) и эмпирическая зависимости предпробивного времени от напряженности поля
 

9.3. Электрический пробой твердых диэлектриков

 

Исследования пробоя твердых диэлектриков по своему объему значительно превышают исследования всех других видов диэлектриков, что обусловлено более широким применением твердых диэлектриков. Это, в свою очередь, обусловлено их высокими электрическими характеристиками в сочетании с удовлетворительными механическими и теплофизическими характеристиками. Механизм пробоя значительно отличается для разных диэлектриков и даже для одного и того же диэлектрика при разных условиях.

Закономерности пробоя твердых диэлектриков

Температурная зависимость. Эта зависимость зачастую имеет достаточно сложный вид. Например в некоторых случаях электрическая прочность с ростом температуры сначала увеличивается затем уменьшается, в других случаях монотонно возрастает или убывает. Последний случай обычно хорошо описывается моделью теплового пробоя.

Рис.9.6. Зависимость электрической прочности пленки SiO2 от толщины [2]

Зависимость от межэлектродного зазора.

При малых зазорах напряженность поля пробоя резко нарастает с уменьшением зазора (рис.9.6). Современные экспериментальные данные по пробою специально выращенных бездефектных пленок показывают, что пробивная напряженность в субмикронных зазорах может доходить до 100 МВ/см.

Зависимость от площади. Эта зависимость - чисто эмпирическая, как в газах и жидкостях, она имеет вид Е=Е0S-1/10

Кристаллографическая направленность. При разряде в кристаллах, например NaCl, с “игольчатого” электрода разряд зачастую имеет вид не “дерева” или “куста”, а разветвленной структуры с ветвями, ориентированными вдоль определенных кристаллографических направлений. При этом, разряд с анодного острия предпочитает одни направления, а с катодного острия - другие.

Закономерности импульсного пробоя: такие же, как в случае пробоя жидкостей. Электрическая прочность в наносекундном диапазоне может превышать 10 МВ/см.

Из теорий электрического пробоя рассмотрим модель электрического пробоя, модель пробоя под действием частичных разрядов и наиболее проработанную теорию теплового пробоя.

Много моделей рассматривают электрический пробой твердых диэлектриков. Считается, что электроны могут вырываться из электродов или из молекул примесей, например путем туннельного эффекта, или термоионизации и попадают в зону проводимости. Там они ускоряются и набирают энергию, достаточную для выбивания новых электронов из заполненной зоны. Выделяющаяся энергия приводит к разрушению и появлению канала разряда. В случае чисто «электрического» механизма не должно быть температурной зависимости Е(Т).

Реальные диэлектрики отличаются от идеальных, прежде всего наличием в теле диэлектрика микропор, в особенности на поверхности раздела “электрод-диэлектрик”. Это является одним из главных факторов ухудшения свойств электрической изоляции в процессе эксплуатации, т.н. старения диэлектриков.

Старение диэлектриков - ухудшение характеристик диэлектриков при их эксплуатации.

Рис.9.7. Зона частичных разрядов на подъеме и спаде напряжения.  

Основной механизм старения диэлектриков - воздействие частичных разрядов. Дело в том, что в энергетике на диэлектрики действуют, как правило, переменные электрические поля. При этом при действии переменного напряжения определенной амплитуды в газовых или воздушных порах возникают частичные разряды.(рис.9.7)

 

Частичный разряд - локальный лавинный разряд в газовой поре диэлектрика.

Каждый разряд оказывает слабое воздействие на диэлектрик за счет образования активных радикалов, излучения, повышенной температуры. Интенсивность ЧР зависит от напряженности поля. Однако разряды обычно возникают на каждом полупериоде синусоидального напряжения, поэтому с течением времени их действие нарастает. Это ведет к постепенному разложению материала, росту давления в поре, появлению проводящих частиц (обуглероживанию), и в конце концов к зарождению дендрита.

Дендрит - древовидное образование в теле диэлектрика, имеющее повышенную проводимость и приводящее к прогрессирующему разрушению диэлектрика. Характерен для любых видов твердых диэлектриков, канал дендрита обладает повышенной проводимостью, имеет размер от 1 мкм до 10-20 мкм.

Интенсивность роста дендрита зависит от напряженности поля и она определяет зависимость времени жизни от напряженности и частоты воздействующего напряжения. Поведение органических и неорганических диэлектриков различается. На переменном напряжении неорганика практически не стареет, т.к. в ней не происходит разложения материала и обуглероживание каналов дендритов. На постоянном напряжении неорганика (содержащая ионы) стареет за счет перемещения ионов разного знака к разным электродам. Органика на переменном напряжении стареет за счет ЧР, на постоянном напряжении практически не стареет.

Водный триинг (водный дендрит) - образование разветвленной микроструктуры в виде объемной сетки или микрокустов в теле диэлектрика, состоящей преимущественно из воды. Характерен для полиэтиленовой изоляции кабелей, работающих во влажных условиях. Растет от точек входа воды вглубь промежутка под действием напряжения и воды. Диаметр водного дендрита - доли микрон. При разрастании структуры триинга до размеров половины промежутка или более, происходит пробой промежутка.

Обычно механизм выхода их строя твердой изоляции под действием напряжения представляется следующим. В порах возникают частичные разряды, они постепенно разрушают диэлектрик в прилегающей области, затем их амплитуда растет и, по достижению некоторого значения, скачкообразно происходит образование микродендрита. Затем ЧР происходят уже в дендрите, и после определенных воздействий, дендрит скачкообразно прорастает дальше вглубь промежутка. В конце концов происходит пробой всего промежутка. Для влажных условий водные дендриты начинают играть превалирующую роль, приводя к пробою при сравнительно низких напряжениях.

По сути дела,тепловой пробой возникает вследствие увеличения электропроводности диэлектрика с ростом температуры, которую обычно представляют в виде s T(s =×)exp(aT-T(×)), где a- температурный коэффициент зависимости. Механизм возникновения представляется следующим образом. Энерговыделение W в среде с напряженностью E и удельной проводимостью s в течении времени tD определяется джоулевыми потерями W = sE2tD. Это приводит к росту температуры DТ в соответствии с выражением W = с×dTD×, где с × удельная теплоемкость, d - плотность диэлектрика. Рост температуры сопровождается ростом электропроводности, что приводит к росту энерговыделения и т.п. В результате возникает ничем не ограниченный (при мощном источнике) рост температуры. Считается, (чисто математически) что пробой произойдет при достижении бесконечной температуры. Для одного частного случая, когда пренебрегается теплоотводом от диэлектрика во внешнюю среду получено известным российским ученым академиком Фоком выражение

Е = (с×d/(a s×(Т0)× t))1/2 (9.4)

Это выражение определяет температурную зависимость электрической прочности E(T0), ввиду зависимости s(Т0).

Экспериментально тепловой пробой твердых диэлектриков выявляется не только по виду температурной зависимости, но и по внешнему виду канала разряда. В этом случае обычно канал разряда расположен в центре образца и он имеет аккуратные гладкие стенки, характерные для проплавления диэлектрика.

– Конец работы –

Эта тема принадлежит разделу:

Дисциплина входит в федеральный компонент цикла общепрофессиональных дисциплин и является обязательной для изучения

канд техн наук доцент кафедры ЭиЭ... Учебно методический комплекс по дисциплине Материаловедение составлен в соответствии с требованиями Государственного...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Элементарные процессы в газе. Лавина, стример, лидер.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ
  1.1. Целью преподавания дисциплины является изучение свойств и характеристик электротехнических материалов, а также области их применения, в частности, в электроизо­ляционных констр

Диэлектрики
  Основные виды поляризации диэлектриков. Диэлектри­ческая проницаемость газов, жидких и твердых диэлектри­ков. Температурный коэффициент диэлектрической прони­цаемости. Токи

Полупроводниковые материалы
  Собственные и примесные полупроводники. Основные и неосновные носители заряда влияние внешних факторов на свойства полупроводников. Оптические и фотоэлектричес­кие явления в полупро

Магнитные материалы
  Классификация материалов по магнитным свойствам: диамагнетики, парамагнетики, ферромагнетики, антиферро­магнетики. Основные характеристики, области применения. Доменное стр

ТЕМЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПРОРАБОТКИ
  № п/п Наименование темы Количество часов Введение

ДИСЦИПЛИНЫ
5.1. Основная 1. Пасынков В.В., Сорокин В.С. Материалы электронной техники: Учебник для вузов — СПб.: Издательство "Лань", 2009. (e.lanbook.ru)

КРАТКИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ
  1. При изучении разделов курса рекомендуется вести конспект, в котором необходимо указать основные положе­ния изучаемого материала. 2. К задачам контрольной работы следует

Основные типы материалов, применяемых в энергетике и электротехнике, композиционные материалы.
  Диэлектрические материалы являются основными видами электротехнических материалов с которыми придется встретиться на практике будущим инженерам-электрикам. Эти материалы служат в ка

Роль материалов в современной технике, в частности в энергетике.
Материалы играют определяющую роль в техническом прогрессе. Можно привести еще примеры из других областей техники. Более близкий пример - изоляторы высоковольтных линий. Исторически первым

Характеристики композиционных материалов
Для начала введем понятие обобщенной проводимости. Оказывается удельные теплопроводность, электропроводность, диэлектрическая проницаемость, коэффициент диффузии являются близкими характер

Основное уравнение электропроводности.
  Способность любых материалов проводить электрический ток определяется наличием зарядов в нем и возможностью их движения. Можно написать наиболее общую формулу, для плотности тока j

Магнитная проницаемость и магнитные поля.
  Прежде чем приступить к лекции хотелось бы напомнить термины и определения.

Диэлектрическая проницаемость материалов.
  Определение этой величины вы должны помнить еще из школы. Давайте вспомним. Если взять плоский конденсатор в вакууме, то заряд на каждой его пластине равен (по модулю):

Механические свойства материалов. Удлинение, деформация, модуль упругости. Разрушающие напряжения при различных видах нагрузки.
  Теплофизические характеристики материалов очень важны для практики. Действительно, материалы в различных энергетических устройствах и установках работают в различных температурных у

Понятие температуры. Характерные температуры (плавления, кипения, Кюри, и т.п.) Температуростойкость материалов. Теплостойкость материалов.
  Температура - это понятие, введенное для характеристики энергии, которой обладают молекулы вещества. С другой стороны, это физическая характеристика, которая соответствует равновеси

Теплоемкость, теплопроводность, температурные коэффициенты материалов.
Теплоемкость - это способность накапливать тепловую энергию в материале при его нагревании

Общие свойства конструкционных материалов.
  Разработка конкретных узлов и устройств ставит ряд общих и специфических задач для используемых материалов. Во первых, они должны выполнять те функции, которые заложены в исходные т

Общие свойства проводников. Температурный коэффициент сопротивления, потери, нагрев проводников.
  Основная характеристика проводника - это его электропроводность.

Материалы для проводов. Медь, алюминий.
  Из проводниковых материалов с высокой тепло- и электро- проводностью самым замечательным материалом для проводов было бы серебро. Его удельное сопротивление при комнатной температур

Материалы для контактов.
  Проводники в месте контакта отличаются от проводников в объеме проводов несколькими обстоятельствами их функционирования. Во - первых, невозможно сделать площадь контакта т

Материалы с малым температурным коэффициентом сопротивления. Материалы для термопар.
  Возвращаясь к температурному коэффициенту для проводниковых резистивных материалов следует упомянуть о существовании материалов с практически нулевым температурным коэффициентом соп

Электропроводность полупроводников и слабопроводящих материалов.
  В любом теле при приложении напряжения должен протекать ток в соответствии с выражением, определяющим плотность тока

Металлические резистивные материалы
Из металлических материалов для резисторов наибольшее распространение получили материалы на основе никеля, хрома и железа, т.н нихромы, и родственные им материалы на основе железа, хрома и алюминия

Графит. Бетэл
  Вторым по значению резистивным материалом является графит. Здесь стоит упомянуть, как изменение структуры материала ведет к принципиальным изменениям характеристик. Наприме

Электропроводящие полимеры
  Рис.7.1. Поведение электропроводности композита ЭКОМ при изменении содерж

Материалы с нелинейной проводимостью. ОЦК, силит, вилит.
  Материалы с нелинейной проводимостью очень важны для энергетики. Дело в том, что с их помощью подавляются паразитные волны перенапряжений в линиях и на подстанциях. Представьте себе

Диэлектрическое и резистивное состояние вещества.
  Диэлектрические вещества - это такие вещества, в кото

Особенности электропроводности для различных агрегатных состояний.
  Как уже указывалось в лекции 2, способность любых материалов проводить электрический ток определяется наличием зарядов в нем и возможностью их движения. Можно еще раз написать наибо

Проводимость неоднородных диэлектриков.
  Реальные электроизоляционные конструкции далеко не всегда состоят из однородных диэлектриков. Они могут содержать композицию из разных диэлектриков или просто иметь границу раздела.

Диэлектрические потери.
  Термин возник из-за того, что в идеальном диэлектрике энергия может только накапливаться в виде W = e0Ee2/2, (на единицу объема, см.8.1.), но не теряться. В ре

Пробой твердых диэлектриков. Электрический пробой. Тепловой пробой. Частичные разряды.
  В предыдущей главе мы рассматривали электропроводность диэлектрических материалов под действием слабых электрических полей. В сильных электрических полях появляются новые процессы,

Газообразные и жидкие диэлектрики
  10.1. Газообразные диэлектрики. 10.1.1. Основные характеристики. 10.1.2. Электроотрицательные газы, применение в энергетике. 10.2. Жидкие диэлектрики. При

Основные характеристики.
  Основные характеристики газов, как диэлектриков, это диэлектрическая проницаемость, электропроводность, электрическая прочность. Кроме того, зачастую важны теплофизические характери

Электроотрицательные газы, применение газообразных диэлектриков.
  Наибольшее применение из газов в энергетике имеет воздух. Это связано с дешевизной, общедоступностью воздуха, простотой создания, обслуживания и ремонта воздушных электроизоляционны

Общие свойства.
  С электрофизической точки зрения наиболее важными характеристиками жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.

Используемые и перспективные жидкие диэлектрики.
  Наиболее распространенный в энергетике жидкий диэлектрик - это трансформаторное масло.

Общие характеристики твердых диэлектриков.
  Твердые диэлектрики - это чрезвычайно широкий класс веществ, содержащий вещества с радикально различающимися электрическими, теплофизическими, механическими свойствами. Например, ди

Виды диэлектриков. Применение твердых диэлектриков в энергетике.
  Все диэлектрические материалы можно разделить на группы, используя разные принципы. Например, разделить на неорганические и органические материалы. Неорганические диэлектри

Свойства наиболее применяемых диэлектриков.
11.3.1. Полимерные материалы. Полимеры, как правило, являются хорошими диэлектриками. Они обладают низкими диэлектрическими потерями, высоким удельным сопротив

Бумага и картон.
Важным преимуществом этих материалов является то, что они производятся из возобновляемого сырья, а именно из древесной массы. Технология приготовления состоит из варки щепы и опилок в щелочном раст

Слюдяные материалы.
Слюда является основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристи

Общие характеристики магнитных материалов.
  Магнитные свойства имеются у любых материалов. Они обусловлены реакцией материала на магнитное поле. Как уже рассматривалось в третьей лекции, магнитную индукцию в любом материале м

Сверхпроводящая керамика.
  13.1. Принцип сверхпроводимости. Влияние магнитного поля   Протекание тока в проводниках всегда связано с потерями энергии, т.е. с переход

Низкотемпературные сверхпроводники
  Выше я уже останавливался на некоторых конкретных сверхпроводящих материалах. В принципе свойство сверхпроводимости характерно практически для всех материалов. Только для самых элек

Сверхпроводящая керамика
  Следующим радикальным шагом в исследовании сверхпроводимости явилась попытка найти сверхпроводимость в оксидных системах. Смутная идея разработчиков состояла в том, что в системах с

Коррозия металлов и композитов. Электрокоррозия. Защита от коррозии.
  Старением материала называются необратимые процессы физических и химических прев

Природные факторы старения
  Здесь можно выделить физические, химические, биологические факторы. Физ

Коррозия материалов.
  Коррозией материала называются химические превращения материала (прежде всего ок

Испытания материалов
  15.1. Подготовка образцов и условийиспытания. 15.2. Поддержание контроль условийиспытания. 15.3. Электрическиеиспытания. 15.3.1.Оп

Подготовка образцов и условия испытаний
  Условиями окружающей среды при проведении испытаний называют сочетание температуры и относительной влажности воздуха или температуры и жидкости, в которых находится образец.

Поддержание и контроль условий испытания.
При подготовке и проведении испытаний требуется соблюдать определенные значения температуры среды, в которой находится образец. Для этой цели применяют термостаты (термокамеры) или криост

Определение общих и удельных сопротивлений образцов.
  Если к диэлектрику приложить постоянное напряжение, то по нему будет протекать ток утечки. Постоянная составляющая этого тока называется сквозным током и может быть представлена в в

Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь на низких частотах.
  Образец диэлектрика с потерями может быть представлен в виде эквивалентной последовательной или параллельной схемы:

Минимальное напряжение, вызывающее электрический пробой, называют пробивным напряжением.
От пробоя, сопровождающегося сквозным разрядом, следует отличать поверхностный пробой, при котором разряд не проникает в глубь материала, а распространяется по поверхности. Стойкость матер

Определение стойкости к внешним электрическим воздействиям.
  Определение дугостойкости электроизоляционных материалов. Под дугостойкостью понимают способность диэлектрика выдерживать воздействие электрической дуги без недопус

Статическая электризация - способность материалов при определенных условиях накапливать заряды статического электричества.
Электризация возникает при трении, распылении материала, коронном разряде вблизи поверхности. При этом повышается пожаро- взрывоопасность производства. Антистатические свойства, т.е. пониженную спо

Тепловые испытания.
К термическим характеристикам относятся: теплопроводность, температура размягчения и воспламенения материала, нагрево- и холодостойкость, стойкость к термоударам.   Теплоп

Механические испытания.
  Основные механические испытания - это определение прочностных характеристик, т.е. способности выдерживать внешние механические нагрузки без недопустимых изменений первоначальных раз

Требования к оформлению контрольной работы
1. Контрольная работа выполняется в отдельной тетради или на листах формата А4. На обложке указывают название дисциплины, номер контрольной работы, курс, фамилию, имя, отчество и учебный шифр студе

При проведении лабораторных работ
  1. Перед выполнением лабораторных работ студенты проходят обязательный инструктаж по технике безопасности при проведении работ в электротехнической лаборатории, о чем делается запис

Часть 1. Экспериментальное определение ВАХ катушки индуктивности с замкнутым магнитопроводом
1.1 Собрать электрическую схему (см. рис.11.2). Переключатель катушки L2 установить в положение 1 – с замкнутым магнитопроводом.  

Автоматика, телемеханика и связь на железнодорожном транспорте (АТС)
  1. Общие сведения о строении вещества. Виды связей. Классификация веществ по электрическим свойствам на основании зонной теории твердого тела. 2. Основные виды поляризации

Для специальностей АТС и ЭНС
При изучении диэлектриков следует рассмотреть зависимость срока службы и процесса старения изоляции электрических машин, трансформаторов и конденсаторов от максимальной рабочей температуры (правило

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги