Сверхпроводящая керамика.

 

13.1. Принцип сверхпроводимости. Влияние магнитного поля

 

Протекание тока в проводниках всегда связано с потерями энергии, т.е. с переходом энергии из электрического вида в тепловой вид. Этот переход необратим, обратный переход связан только с совершением работы, как об этом говорит термодинамика. Существует, правда возможность перевода тепловой энергии в электрическую и с использованием т.н. термоэлектрического эффекта, когда используют два контакта двух проводников, причем один нагревают, а другой охлаждают.

На самом деле, - и этот факт удивителен, существует ряд проводников, в которых, при выполнении некоторых условий, потерь энергии при протекании тока нет! В рамках классической физики этот эффект необъясним. Согласно классической электронной теории движение носителя заряда происходит в электрическом поле равноускоренно до столкновения с дефектом структуры или с колебанием решетки. После столкновения, если оно неупругое, как столкновение двух пластилиновых шариков, электрон теряет энергию, передавая ее решетке из атомов металла. В этом случае принципиально не может быть сверхпроводимости.

Сверхпроводимость, как и сверхтекучесть, были обнаружены в экспериментах при сверхнизких температурах, вблизи абсолютного нуля температур. По мере приближения к абсолютному нулю колебания решетки замирают. Сопротивление протеканию тока уменьшается даже согласно классической теории, но до нуля при некоторой критической температуре Тс, оно уменьшается только согласно квантовым законам.

Сверхпроводимость обнаружили по двум явлениям: во первых по факту исчезновения электрического сопротивления, во вторых по диамагнетизму. Первое явление понятно - если пропускать определенный ток I через проводник, то по падению напряжения U на проводнике можно определить сопротивление R = U/I. Исчезновение напряжения означает исчезновение сопротивления как такового.

Второе явление требует более подробного рассмотрения. Если рассуждать логически, то отсутствие сопротивления тождественно абсолютной диамагнитности материала. Действительно, представим себе небольшой опыт. Будем вводить сверхпроводящий материал в область магнитного поля. Согласно закону Джоуля-Ленца, в проводнике должен возникать ток, полностью компенсирующий изменение магнитного потока, т.е. магнитный поток через сверхпроводник как был нулевым, так и остается нулевым. В обычном проводнике этот ток затухает, т.к. у проводника есть сопротивление. Только после этого в проводник проникает магнитное поле. В сверхпроводнике он не затухает. Это означает, что протекающий ток приводит к полной компенсации магнитного поля внутри себя, т.е. поле в него не проникает. С формальных позиций нулевое поле означает, что магнитная проницаемость материала равна нулю, m = 0 т.е. тело проявляет себя абсолютным диамагнетиком.

Однако эти явления характерны только для слабых магнитных полей.

Например для цилиндрического проводника радиуса r, помещенного в среду с магнитной проницаемостью m, магнитная индукция на поверхности в соответствии с законом Био-Савара-Лапласа составит

B = m0×m×I/2pr (13.1)

Чем больше ток, тем больше поле. Таким образом, при некоторой индукции (или напряженности) сверхпроводимость пропадает, а следовательно, через проводник можно пропустить только ток, меньше того, который создает критическую индукцию.

Таким образом для сверхпроводящего материала мы имеем два параметра: критическая индукция магнитного поля Вс и критическая температура Тс.

Для некоторых металлов критические параметры приведены в таблице.

Металл Zn Cd Al Ga In Ti Sn Pb
Вс, мТл 5.3 9.9 5.1 28.3 16.2 20.6 80.3
Тс, К 0.88 0.56 1.19 1.09 3.41 1.37 3.72 7.18

Видно, что для металлов критические температуры близки к абсолютному нулю температур. Это область, т.н. «гелиевых» температур, сравнимых с точкой кипения гелия (4.2 К). Относительно критической индукции можно сказать, что она сравнительно невелика. Можно сравнить с индукцией в трансформаторах (1-1.5 Тл). Или например с индукцией вблизи провода. Рассчитаем например индукцию в воздухе вблизи провода радиусом 1 см при протекании тока 100 А.

m0 = 4p 10-7 Гн/м,
m = 1, I = 100 A,
r = 10-2м.

Подставляя в выражение (13.1) получим В = 2 мТл, т.е значение, примерно соответствующее критическим. Это означает, что если такой проводник поставить в линию электропередач, например 6 кВ, то максимальная мощность, которая может передаваться по каждой фазе составит Рм = Uф·I = 600 кВт. На рассмотренном примере видно, что собственное магнитное поле ограничивает возможность передачи мощности по криогенному проводу. При этом, чем ближе температура к критической температуре, тем меньше значение критической индукции.