рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Макромир

Макромир - раздел Культура, Естествознание как феномен культуры   От Микромира К Макромиру.Теория Строения...

 

От микромира к макромиру.Теория строения атома дала химии ключ к познанию сущности химических реакций и механизма образований химических соединений – более сложного молекулярного уровня организации вещественной материи по сравнению с элементной атомной формой.

Квантовая механика позволила решить очень важный вопрос о расположении электронов в атоме и установить зависимость свойств элементов от строения электронных оболочек. В настоящее время разработаны схемы строения атомов всех химических элементов. При их построении ученые исходили из общих соображений об устойчивости различных комбинаций электронов. И естественно, что путеводной нитью при этом служил периодический закон Д.И. Менделеева.

При разработке схем строения атомов элементов учитывалось следующее:

1)принималось, что число электронов в атоме равно заряду атомного ядра, т.е. порядковому номеру элемента в периодической системе;

2)вся электронная оболочка распадается на несколько слоев соответствующих определенным энергетическим уровням (n = 1, 2,3,4,...);

3)на каждом уровне п может находиться не более N электронов, где N= 2п2;

4)состояние каждого электрона в атоме определяется совокупностью четырех квантовых чисел п, l, т и s.

В соответствии с принципом Паули все электроны в атоме отличаются друг от друга хотя бы одним квантовым числом. В атоме нет двух электронов, у которых все квантовые числа одинаковы, соответствии с указанными допущениями построены упрощенные схемы строения атомов для первых трех периодов таблицы Менделеева.

Несмотря на условность и простоту этих схем, они тем не менее достаточны для объяснения важнейших свойств элементов и ия соединений.

Так, например, на первом энергетическом уровне ( n = 1, l =0, т = 0) могут находиться только два электрона, отличающиеся своими спиновыми квантовыми числами (s = ±1/2). Других электронов при п = 1 быть не может. Это соответствует тому, что если на первом уровне имеется один электрон, то это — атом водорода; если два электрона, то это – атом гелия. Оба элемента заполняют первый ряд таблицы Менделеева.

Второй ряд таблицы Менделеева занимают элементы, электроны которых расположены на втором энергетическом уровне (п = 2). Всего на втором энергетическом уровне может быть восемь электронов (N=2·22).

Действительно, при п = 2 могут иметь место следующие состояния электронов: если l = 0 и т= 0, то может быть два электрона с противоположными спинами; если l = 1, то тможет принимать три значения = –1; 0; +1), и каждому значению тсоответствует также по два электрона с разными спинами. Таким образом, всего будет восемь электронов.

Второй ряд элементов в таблице Менделеева, у которых последовательно добавляется по одному электрону на втором энергетическом уровне, — литий, бериллий, бор, углерод, азот, кислород, фтор, неон.

При главном квантовом числе п = 3 l может принимать три зна­чения (l =0; 1; 2), а каждому l соответствует несколько значений т. при l = 0 т= 0; при l ~ 1 т= –1; 0; +1; при l=2 т= –2; -1; 0; I 1; +2 (рис. 2.4).

Так как всего может быть девять значений т, а каждому состоянию тсоответствует два электрона с разными значениями s = ±1/2, nо всего на третьем энергетическом уровне (п = 3) может быть 18 электронов (N = 2·З2).

Третий ряд в таблице Менделеева соответствует последователь­ному заполнению электронами внешнего энергетического уровня у элементов от натрия до аргона (натрий, магний, алюминий, кремний, фосфор, сера, хлор, аргон).

Энергетические уровни и возможные состояния электронов в атоме:возможные орбиты, на которых электрон в атоме движется вокруг ядра, можно изобразить в виде окружностей (А), в каждой из которых точно укладывается целое число длин световых волн, равное главному квантовому числу п. Двумерный аналог атома может быть описан двумя квантовыми числами, а реальный атом характеризуют три квантовых числа.

Следующие ряды периодической системы соответствуют более сложным правилам заполнения внешних уровней атомов электронами, поскольку при увеличении общего числа электронов, а атомах начинают проявляться коллективные взаимодействия между разными группами электронов, расположенных на разных энергетических уровнях. Это приводит к необходимости учитывать ряд более тонких эффектов.

Выяснение строения электронных оболочек атомов оказало влияние и на саму структуру периодической системы, несколько изменив существовавшее до тех пор деление элементов на периоды. В прежних таблицах каждый период начинался с инертного газа, причем водород оставался вне периодов. Но теперь стало ясно, что новый период должен начинаться с того элемента, в атоме которого впервые появляется новый электронный слой в виде одного валентного электрона (водород и щелочные металлы), и заканчиваться тем элементом, в атоме которого этот слой имеет восемь электронов, образующих очень прочную электронную структуру, свойственную инертным газам.

Теория строения атомов разрешила также вопрос о положении в периодической системе редкоземельных элементов, которые ввиду их большого сходства друг с другом нельзя было распределить по различным группам. Атомы этих элементов отличаются друг от друга строением одного из внутренних электронных слоев, в то время как число электронов в наружном слое, от которого главным образом зависят химические свойства элемента, у них одинаково. По этой причине все редкоземельные элементы (лантаноиды) помещены теперь вне общей таблицы.

Однако основное значение теории строения атомов заключалось в раскрытии физического смысла периодического закона, который, но времена Менделеева был еще неясен. Достаточно взглянуть на таблицу расположения электронов в атомах химических элементов, чтобы убедиться, что с увеличением зарядов атомных ядер постоянно повторяются одни и те же комбинации электронов в наружном слое атома. Таким образом, периодическое изменение свойств химических элементов происходит вследствие периодического возвращения к одним и тем же электронным конфигурациям.

Попытаемся установить более точно, в какой зависимости от строения электронных оболочек находятся химические свойства атомов.

Рассмотрим сначала изменение свойств в периодах. В пределах каждого периода (кроме первого) металлические свойства, наиболее резко выраженные у первого члена периода, при переходе к последующим членам постепенно ослабевают и уступают место металлоидным свойствам: в начале периода стоит типичный металл, в конце – типичный металлоид (неметалл) и за ним – инертный газ.

Закономерное изменение свойств элементов в периодах может быть объяснено следующим образом. Наиболее характерным свойством металлов с химической точки зрения является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, тогда как металлоиды, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов.

Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, которая называется потенциалом ионизации.

Потенциал ионизации имеет наименьшее значение у элементов, начинающих период, т.е. у водорода и щелочных металлов, и наибольшее – у элементов, заканчивающих период, т.е. у инертных газов. Величина его может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.

Величина потенциала ионизации зависит от трех причин: от величины заряда ядра, радиуса атома и особого рода взаимодействия между электронами в электрическом поле ядра, вызванного их волновыми свойствами. Очевидно, что чем больше заряд ядра и чем меньше радиус атома, тем сильнее притягивается электрон к ядру тем больше потенциал ионизации.

У элементов одного и того же периода при переходе от щелочного металла к инертному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Следствием этого и является постепенное увеличение потенциала ионизации и ослабление металлических свойств. У инертных газов, хотя радиусы их атомов больше, чем радиусы атомов галогенов, стоящих в том же периоде, потенциалы ионизации больше, чем у галогенов. В этом случае сильно сказывается действие третьего из вышеупомянутых факторов – взаимодействия между электронами, вследствие чего внешняя электронная оболочка атома инертного газа имеет особую энергетическую устойчивость, и удаление из нее электрона требует значительно большей затраты энергии.

Присоединение электрона к атому металлоида, превращающее его электронную оболочку в устойчивую оболочку атома инертного газа, сопровождается выделением энергии. Величина этой энергии при расчете на 1 грамм-атом элемента служит мерой так называемого сродства к электрону. Чем больше сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, – атомы металлов не способны присоединять электроны. У атомов же металлоидов сродство к электрону тем больше, чем ближе к инертному газу стоит металлоид в периодической системе. Поэтому в пределах периода металлоидные свойства усиливаются по мере приближения к концу периода.

В повседневной жизни нам не приходится иметь дело с атомами. Окружающий нас мир построен из объектов, образованных из гигантского числа атомов в виде твердых тел, жидкостей и газов. Следовательно, нашим следующим шагом должно быть изучение того, как атомы взаимодействуют друг с другом, образуя молекулы, а затем и макроскопическое вещество. Даже человеческая индивидуальность (и вообще поведение всех живых организмов) является результатом различий в структурах гигантских молекул, несущих генетическую информацию.

Молекулы состоят из одинаковых или различных атомов, соеди­ненных между собой межатомными химическими связями. Устойчивость молекул свидетельствует о том, что химические связи обусловлены силами взаимодействия, связывающими атомы в молекулу.

Силы межатомного взаимодействия возникают между внешними электронами атомов. Потенциалы ионизации этих электронов значительно меньше, чем у электронов, находящихся на внутренних энергетических уровнях.

Нахождение конкретных формул химических соединений значительно упрощается, если воспользоваться понятием о валентности элементов, т.е. свойством его атомов присоединять к себе или замещать определенное число атомов другого элемента.

Понятие о валентности распространяется не только на отдельные атомы, но и на целые группы атомов, входящие в состав химических соединений и участвующие как одно целое в химических реакциях. Такие группы атомов получили название радикалов.

Физические основы химических связей в молекулах вещества. Однако природа сил, обусловливающих связь между атомами в молекулах, долгое время оставалась неизвестной. Только с развитием учения о строении атома появились теории, объясняющие причину различной валентности элементов и механизм образования химических соединений на основе электронных представлений. Все эти теории основываются на существовании связи между химическими и электрическими явлениями.

Остановимся, прежде всего, на отношении веществ к электрическому току.

Одни вещества являются проводниками электрического тока, как и твердом, так и в жидком состоянии: таковы, например, все металлы. Другие вещества в твердом состоянии тока не проводят, но элекропроводны в расплавленном виде. К ним принадлежит огромное большинство солей, а также многие окислы и гидраты окислов. Наконец, третью группу составляют вещества, не проводящие тока ни в твердом, ни в жидком состоянии. Сюда относятся почти все металлоиды.

Опытом установлено, что электропроводность металлов обу­словлена движением электронов, а электропроводность расплавленных солей и им подобных соединений – движением ионов, имеющих противоположные заряды. Например, при прохождении тока через расплавленную поваренную соль к катоду движутся положительно заряженные ионы натрия Na+, а к аноду – отрицательно за­ряженные ионы хлора Сl. Очевидно, что в солях ионы существуют уже в твердом веществе, расплавление лишь создаст условия для их свободного движения. Поэтому такие соединения получили название ионных соединений. Вещества, практически не проводящие тока, не содержат ионов: они построены из электрически нейтральных молекул или атомов. Таким образом, различное отношение веществ к электрическому току является следствием различного электрического состояния частиц, образующих эти вещества.

Указанным выше типам веществ отвечают два различных ти­па химической связи:

а)ионная связь, иначе называемая электровалентной (между противоположно заряженными ионами в ионных соединениях);

б)атомная, или ковалентная, связь (между электронейтральными атомами в молекулах всех остальных веществ).

Ионная связь.Такого типа связь существует между противополож­но заряженными ионами и образуется в результате простого электро­статического притяжения ионов друг к другу.

Положительные ионы образуются путем отщепления от атомов электронов, отрицательные – путем присоединения электронов к атомам.

Так, например, положительный ион Na+ образуется при отщеплении от атома натрия одного электрона. Так как в наружном слое атома натрия находится только один электрон, то естественно предположить, что именно этот электрон, как наиболее удаленный от ядра, и отщепляется от атома натрия при превращении его в ион. Подобным же образом ионы магния Mg2+ и алюминия А13+ получаются в результате отщепления от атомов магния и алюминия соответственно двух и трех внешних электронов.

Напротив, отрицательные ионы серы и хлора образуются путем присоединения к этим атомам электронов. Поскольку внутренние электронные слои в атомах хлора и серы заполнены, дополнитель­ные электроны в ионах S2 и Сl, очевидно, должны были занять места во внешнем слое.

Сравнивая состав и строение электронных оболочек ионов Na+, Mg2+, А13+, мы видим, что у всех этих ионов они одинаковы – такие же, как у атомов инертного газа неона (Ne).

В то же время ионы S2 и Сl, образующиеся в результате при­соединения электронов к атомам серы и хлора, имеют такие же элек­тронные оболочки, как и атомы аргона (Аг).

Таким образом, в рассмотренных случаях при превращении атомов в ионы электронные оболочки ионов уподобляются оболочкам атомов инертных газов, наиболее близко к ним расположенных в периодической системе.

Современная теория химической связи объясняет это тем, что электронные группировки в атомах инертных газов (два электрона в наружном слое атома гелия и восемь электронов в атомах остальных инертных газов) являются особенно устойчивыми. Именно вследствие устойчивости этих группировок инертные газы и не способны вступать в соединение с другими элементами. Атомы, имеющие в наружном слое менее восьми электронов, стремятся приобрести структуру инертных газов, отдавая «лишние» электроны или пополняя их число в своем наружном слое до восьми за счет электронов других атомов, что и происходит при образовании большинства химических соединений, состоящих из ионов.

Процесс образования химического соединения ионного типа из атомов можно представить следующим образом.

Сначала атомы превращаются в разноименно заряженные ионы вследствие перехода электронов от одного атома к другому, а затем уже ионы взаимно притягиваются, образуя соединение с ионной связью.

Положим, например, чтоатомы натрия, имеющие в наружной оболочке только один электрон, встречаются с атомами хлора, наружная оболочка которых содержит семь электронов. Атомы натрия отдают свои «лишние» электроны, атомам хлора, превращаясь в положительные однозарядные ионы с электронной конфигура­цией инертного газа неона. В то же время атомы хлора, присоеди­нившие к своему наружному слою по одному электрону, становятся отрицательными однозарядными ионами со структурой атомов аргона. После этого сила электрического притяжения между разноименными зарядами связывает образовавшиеся ионы друг с другом, в результате чего получается соль – хлористый натрий (рис. 3).

 

Рис.3. Схема образования хлористого натрия

 

Изложенные выше представления о механизме образования ионных соединений приводят к заключению, что валентность элементов в ионных соединениях характеризуется числом электрических заря­дов их ионов. Иначе ее называют электровалентностью.

Величина электровалентности определяется числом электронов, отданных атомом при образовании положительного иона или присоединившихся к нему при образовании отрицательного иона. В первом случае электровалентность считается положительной, во втором – отрицательной.

Способность атомов превращаться в положительные или отрицательные ионы зависит от положения соответствующих элементов в периодической системе. Атомы элементов, стоящих в начале периода, имеют меньший заряд ядра, чем атомы элементов, находя­щиеся в конце периода. В первом случае электроны притягиваются слабее, чем во втором, поэтому склонность атомов к превращению в положительные ионы, вообще говоря, уменьшается в периоде в направлении слева направо.

Ковалентная связь. Предположение об электростатическом при­тяжении между противоположно заряженными ионами, как о причине возникновения химической связи, явно неприменимо к молекулам простых веществ (водорода Н2, кислорода О2 и др.), а также к молекулам веществ, образованных близкими по химическим свойствам элементами, так как в этом случае трудно допустить возникновение противоположно заряженных ионов. Поэтому по отноше­нию к таким веществам бьиа выдвинута другая теория их образова­ния, получившая название теории ковалентных связей. При разработке этой теории тоже учитывалась химическая устойчивость атомов инертных газов.

Согласно теории ковалентных связей при образовании молекул (как и при образовании ионных соединений) атомы химических эле­ментов приобретают устойчивые электронные оболочки, подобные оболочкам атомов инертных газов. Однако устойчивость эта дости­гается не путем перехода электронов от одних атомов к другим, а путем образования одной или нескольких пар электронов, которые становятся общими для соединяющихся атомов, т.е. входят одновременно в состав электронных оболочек двух атомов. Можно представить себе, что эти «спаренные» электроны вращаются по орбитам, охватывающим ядра обоих атомов, и таким образом связывают атомы в молекулу.

Химическая связь, обусловленная наличием электронных пар, называется ковалентной, или атомной, связью, в отличие от электровалентной, или ионной, связи, основанной на электростатическом притяжении между разноименно заряженными ионами.

Предположение о паре электронов, как бы «обслуживающей» два ядра, как о причине возникновения ковалентной связи получило обоснование в волновой механике. Два положительно заряженных ядра можно рассматривать как одно ядро с большим зарядом, чем у каждого из ядер в отдельности. Электрон, вращающийся вокруг такого комбинированного ядра, удерживается более сильно, чем, если бы он вращался около одного из ядер. Этим объясняется энергетическая выгодность образования ковалентных связей. Новая орбит движения электрона в молекуле называется молекулярной. Движение электронов по молекулярным орбитам подчиняется тому же правил Паули, что и движение по атомным орбитам. Поэтому на одной той же молекулярной орбите не может быть больше двух электронов, причем они должны иметь противоположные спины. Электроны одинаковыми спинами на одной и той же молекулярной орбите находиться не могут. Вот почему каждая ковалентная связь образована лишь парой электронов.

Образование молекулярных орбит с точки зрения волновой механики является следствием «перекрывания» атомных орбит. В результате такого перекрывания наибольшая электронная плотность молекулярной орбите, если ее представить, как электронное облако оказывается между ядрами. Это значит, что электроны при движении по молекулярной орбите наиболее часто попадают в область, находящуюся между ядрами. В результате между ядрами создается как бы прослойка из отрицательного электричества, способствующая сближению ядер. Поэтому чем сильнее «перекрываются» атомные орбиты при образовании молекулярных орбит, тем прочнее связь. Валентность или, точнее, ковалентность элемента в данном соединена, определяется числом электронов его атома, идущих на образование общих, или «связующих», электронных пар.

Итак, ковалентная связь между атомами в молекулах обусловливается наличием одной или нескольких общих пар электронов. Так как при образовании ковалентной связи, как правило, не происходит ни потери, ни присоединения электронов к атомам, то понятно, что молекулы с ковалентной связью не содержат ионов. Примером молекул с ковалентной связью может служить вода (Н2,О).

Одним из элементов, образующих ковалентные связи, является углерод. Углерод участвует в молекулярных структурах почти всегда с четырьмя ковалентными связями.

Большая часть животного и растительного мира образована соединениями углерода (С) с водородом (Н) и некоторыми другими элементами, прежде всего азотом (N), кислородом (О), фосфором (Р) и серой (S). Эти соединения первоначально называли органическими соединениями, в отличие от ионных (неорганических), так как по своему химическому составу все животные и растения почти на 98% состоят из указанных шести химических элементов.

Простейшими из органических молекул являются углеводороды, состоящие только из атомов углерода и водорода. Каждая черточка – ковалентная связь, осуществляемая двумя электронами. При комнатной температуре первые четыре вещества данного углеводородного ряда – газы, следующие десять –жидкости, а все последующие – твердые вещества, или парафины.

Сложные органические соединения содержат ряд других элементов. Так, все органические кислоты (например, лимонная) и все спирты (например, этиловый) содержат кислород.

Многие молекулы в живой природе, в частности молекулы белков, чрезвычайно сложны. Несмотря на это, в последнее время были достигнуты большие успехи в определении состава, структуры и функции этих молекул. В частности, многое стало известно о структуре ДНК (дезоксирибонуклеиновой кислоты), несущей генетическую информацию. Хотя эта молекула может содержать до миллиона атомов, ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

После того, как была выяснена природа сил, приводящих к объединению атомов в молекулы, т.е. природа «химизма», проявляющаяся в огромном многообразии химических превращений вещества, в том числе приводящая к образованию многоатомных сложных молекул, стал ясен механизм первой ступени самоорганизации материи в природе от более простых атомных систем к гораздо более сложным молекулярным системам. Диапазон известных молекулярных структур огромен – от двухатомных молекул типа Н2, О2 до макромолекул органических соединений, состоящих из сотен и тысяч атомов, – белков и нуклеиновых кислот.

Из огромной совокупности разных молекул состоит все неживое и живое вещество природы – макротела. Количественные изменения при переходе от микрообъектов (атомов, молекул) к макротелам большой совокупности микросистем – приводят к существенным качественным изменениям в поведении, следовательно, в описании этих объектов исследования.

На макроуровне принято отдельно рассматривать вещественную молевую материю. Вещество может находиться в четырех агрегат­ных состояниях – твердые тела, жидкости, газы, плазма. Все явления и процессы в макромире связаны с процессами сохранения и преобразования одних форм движения в другие на основе двух всеобъемлющих законов – закона сохранения и превращения энергии и закона возрастания энтропии.

Указанные макропроцессы изучаются в рамках так называемой физической картины мира – в виде законов механики, статистической фишки, термодинамики и электродинамики. А вся совокупность явлений макромира изучается многочисленными естественно-научными дисциплинами (физикой, химией, геологией, биологией и т.д.).


– Конец работы –

Эта тема принадлежит разделу:

Естествознание как феномен культуры

Глава Естествознание как феномен культуры Естественно научная и гуманитарная культуры Естествознание как элемент мировоззрения.. Глава Основы методологии науки Сущность научного знания Наука и.. Глава История науки и естествознания История естествознания и модели развития науки Подходы к изучению..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Макромир

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Естественно-научная и гуманитарная формы культуры
  Под культурой в самом широком смысле принято понимать все то, что создано человечеством в ходе его исторического развития. Иначе говоря, культура – это совокупность

Научный метод
  Исследование феномена история науки непременно приводит к конкретным личностям – ученым, сделавшими открытия, изобретения, являющиеся «посредниками» в инновационной среде развития ц

Концепции строения материи и развития материального мира
  Как известно, первый период становления естествознания относится к VII–IV вв. до н.э. и связан с греческой натурфилософией. В течение этого периода вырабатываются общие точки зрения

Корпускулярно-волновой дуализм
  По-иному шла история развития представлений о природе света и оптических явлениях. Напомним, что Аристотель считал, что свет – это движение волн, распространяющихся в некоторой непр

Порядок и беспорядок в природе, детерминированный хаос
  Обращая внимание на существующий порядок в природе, мы часто в качестве примера указываем на кристаллы, в кристаллической решетке которых строго чередуются ионы вещества (например,

Структурные уровни организации материи
  В настоящее время принято единую Природу для удобства делить на три структурных уровня – микро-, макро- и мегамир. Естест­венными, хотя отчасти и субъективными, признаками деления я

Микромир
Атомная физика.Еще древние греки Левкипп и Демокрит выдвинули гениальную догадку, что вещество состоит из мельчайших частиц – атомов. Научные основы атомно-молекулярно

Мегамир
  Объектами мегамира являются тела космического масштаба – кометы, метеориты, астероиды (малые планеты), планеты, планетные пстемы, Солнечная система, звезды (нейтронные, белые и желт

Пространство и время
Пространство и время – категории, обозначающие основные фундаментальные формы существования материи. Пространство выражает порядок существования отдельных объектов, время – порядок см

Единство и многообразие свойств пространства и времени
Поскольку пространство и время неотделимы от материи, правильнее было бы говорить о пространственно-временных свойствах и отношениях материальных систем. Но при позна­нии пространства и времени уче

Принцип причинности
Классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние

Стрела времени
  На существование парадокса времени было обращено внимание почти одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона вр

Пространство и время в греческой натурфилософии
Наиболее видные представители античного естествознания – Демокрит и Аристотель – высказали следующие суждения о пространстве и времени. Демокрит считал, что все природное многообразие сост

Пространство и время в специальной теории относительности (СТО)
В специальной теории относительности А. Эйнштейна выявилась взаимозависимость пространственных и временных характеристик объектов, а также их зависимость от скорости движения относительно определен

Пространство и время в общей теории относительности (ОТО)
Еще более сложную связь, по сравнению с СТО, между пространством и временем, с одной стороны, и движением и материей (массой вещества) – с другой, была установлена А. Эйнштейном в рамках созданной

Пространство и время в физике микромира
Еще более углубились представления о пространстве и времени в связи с изучением микромира квантовой механикой и квантовой теорией поля, выявившими тесную связь структуры пространства-времени с мате

Современные взгляды на пространство и время
  Ранее мы выяснили, какие из свойств пространства и времени являются универсальными (всеобщими), а какие – специфическими (их всеобщность не доказана). Отнесение к специфическим хара

Специальная теория относительности
  После создания электродинамики, доказавшей существование в природе еще одного вида материи – электромагнитного поля, которое математически описывается системой уравнений Максвелла,

Общая теория относительности
  В СТО законы формулируются для инерциальных систем, движущихся с постоянной скоростью. В ОТО рассматриваются любые системы отсчета, в том числе и движущиеся с ускорением. Таким обра

Принципы симметрии и законы сохранения
2.6.1. Симметрия: понятие, формы и свойства Понятие симметрии. Как известно, в физике имеется целый ряд законов сохранения, например закон сохранения

Принципы симметрии и законы сохранения
  Что такое симметрия? Слово это греческое и переводится как «соразмерность, пропорциональность, одинаковость в расположении частей». Часто проводятся параллели: симметрия и уравновеш

Диалектика симметрии и асимметрии
  С давних времен симметрия форм, наблюдаемых в природе, производила на человека сильное впечатление. Он видел в симметрии порядок, гармонию, совершенство, вносимые всемогущим творцом

Концепции близкодействия и дальнодействия
Дальнодействие. После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие элек­трических заряженных тел, возник вопрос, почему

Фундаментальные типы взаимодействий
  Согласно концепции близкодействия все взаимодействия между юлами (помимо прямого контакта между ними) осуществляются с помощью тех или иных полей (например, взаимодействие в теории

Дополнительности
Мы часто говорим о том или ином состоянии материи. Например, мы выделяем несколько агрегатных состояний вещества: твердое, жидкое, газообразное, плазма. Говорим о состояниях электромагнитного поля,

Принцип неопределенности
  Используемые в квантовой механике волновые функции для описания микрочастиц дают возможность установить вероятность нахождения микрочастиц в том или ином месте пространства в соотве

Принцип дополнительности
  Для описания микрообъектов Н. Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, который наиболее четко изложил в следующей форме:

Принцип суперпозиции
  В физике при изучении линейных систем широко используется принцип суперпозиции. Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме рез

Динамические и статистические закономерности в природе
  Рассмотрим два типа физических явлений: механическое движе­ние тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Зако

Формы энергии
  Энергия (от греч.– действие, деятельность) – общая ко­личественная мера движения и взаимодействия всех видов материи, Понятие «энергия» связывает воедино все явления природы.

Закон сохранения энергии для механических процессов
Одним из наиболее фундаментальных законов природы является закон сохранения энергии, согласно которому важнейшая физическая величина – энергия – сохраняется в изолированной системе.

Всеобщий закон сохранения и превращения энергии
  Изучение процесса превращения теплоты в работу и обратно и установление механического эквивалента теплоты сыграло основную роль в открытии всеобщего закона сохранения и превращения

Закон сохранения энергии в термодинамике
  Закон сохранения энергии сыграл решающую роль в создании новой научной теории – термодинамики. Опираясь на этот закон, был сделан ряд открытий в области электродинамики.

Понятие энтропии
  Понятие энтропии исторически возникло при рассмотрении и изучении тепловых процессов и создании термодинамики. К мо­менту зарождения термодинамики в естествознании господствовала ме

Основные космологические теории эволюции Вселенной
Учение о мегамире как едином целом и всей охваченной астроно­мическими наблюдениями области Вселенной (Метагалактике) называется космологией. Вывод

ХИМИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ
  Химия – наука о веществах и процессах их превращения, сопровождающие изменением состава и структуры. Основанием химии выступает проблема получе

Развитие учения о составе вещества
Демокрит иЭпикурсчитали, что все тела состоят из атомов различной величины и формы, чем и объясняли различие тел. Аристотельи Эмпедоклвидимое разнообразие те

Развитие учения о структуре молекул
При взаимодействии атомов между ними может возникнуть химическая связь, приводящая к образованию многоатомной системы – молекулы, молекулярного иона или кристалла. Химическая связь

Энергетика химических процессов и систем
Химические реакции– взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химическ

Реакционная способность веществ
  Химическая кинетика – раздел химии, изучающий закономерности протекания физико-химических процессов во времени и механизмы взаимодействия на атомно-молекуляр

Химическое равновесие. Принцип Ле Шателье
Многие химические реакции протекают таким образом, что исходные вещества целиком превращаются в продукты реакции или, как говорят, реакция идет до конца. Так, например, бертолетова соль при нагрева

Развитие представлений об эволюционной химии
  Эволюционная химия рассматривает вопросы эволюционного развития и совершенствования химической формы материи, в том числе в процессах ее самоорганизации до перехода в биологическую

Внутреннее строение и история образования Земли
  Земля, как и другие планеты, возникла из солнечного вещества. Документальными свидетелями допланетной стадии развития вещества и ранних этапов существования Земли служат соотношения

Внутреннее строение Земли
Главными методами изучения внутренних частей нашей планеты являются, в первую очередь, геофизические наблюдения за скоростью распространения сейсмических волн, образующихся при взрывах или землетря

История геологического строения Земли
  Историю геологического строения Земли принято изображать в виде последовательно появляющихся друг за другом стадий или фаз. Отсчет геологического времени ведется от начала процесса

Современные концепции развития геосферных оболочек
4.2.1. Концепция глобальной геологической эволюции Земли   Разработка концепции глобальной эволюции Земли позволила представить развитие геосферных об

История формирования геосферных оболочек
  Рассмотрим в свете концепции глобальной эволюции Земли историю формирования основных геосферных оболочек. Этапы развития Земли с позиций концепции глобальной геоэво

Понятие литосферы
  Литосфера – внешняя твердая оболочка Земли, которая включает всю земную кору и часть верхней мантии. Это особый слой толщиной порядка 100 км. Нижняя гр

Экологический функции литосферы
  Обычно выделяют четыре экологические функции литосферы: ресурсную, геодинамическую, геофизическую и геохимическую. Ресурсная функция литосферы определя

Литосфера как абиотическая среда
  В литосфере происходит множество процессов (сдвиги, сели, обвалы, эрозии и др.), имеющих целый ряд неблагоприятных экологических последствий в определенных регионах планеты, а иногд

Особенности биологического уровня организации материи
Биология (от греч. «биос» – жизнь, «логос» – учение) – наука о живой природе. Биология изучает живые организмы – вирусы, бактерии, грибы, животных и растения. В

Уровни организации живой материи
  Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерар­хии живого. Выделяют следующие уровни органи

Свойства живых систем
  М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, пос

Химический состав, строение и воспроизведение клеток
Из 112 химических элементов Периодической системы Д.И. Менделеева в состав организмов входит более половины. Химические элементы входят в состав клеток в виде ионов или компонентов молекул неоргани

Биосфера и ее структура
  Термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюсс для обозначения оболочки Земли, населяемой живыми организмами. В 20-х гг. прошлого века в трудах В.И. Вер

Функции живого вещества биосферы
Живое вещество обеспечивает биогеохимический круговорот веществ и превращение энергии в биосфере. Выделяют сле­дующие основные геохимические функции живого вещества: 1.Энергетич

Круговорот веществ в биосфере
Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения

Основные эволюционные учения
  На протяжении многих веков господствовали представления о Божественном происхождении природы, о том, что виды организмов были созданы в их нынешних формах, после чего они же не изме

Микро- и макроэволюция. Факторы эволюции
  Эволюционный процесс разделяют на два этапа: - микроэволюцию – возникновение новых видов; - макроэволюцию – эволюци

Направления эволюционного процесса
С момента возникновения жизни развитие живой природы шло от простого к сложному, от низкоорганизованных форм к более высоко организованным и имело прогрессивный характер. А.

Основные правила эволюции
Правило необратимости эволюции (правило Л. Долло): эволюционный процесс необратим, возврат к прежнему эволюционному состоянии, ранее осуществленному в ряду поколений предков, н

Происхождение жизни на Земле
Существует несколько гипотез о происхождении жизни на Земле. Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира приде

Механизм возникновения жизни
Возраст Земли со­ставляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад. В 1924 г. русский академик А.И. Опарин

Начальные этапы развития жизни на Земле
Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно ор

Основные этапы развития биосферы
  Эон Эра Период Возраст (начало), млн. лет Органический мир

Система органического мира Земли
Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымира­ния. Биологическое

Надцарство Эукариоты
Эукариоты– од­ноклеточные или многоклеточные организмы, имеющие оформленное ядро и различные органоиды. ЦАРСТВО ГРИБЫ – подцарство Слизевики

Структура и функционирование экологических систем
  Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы. Каждая из сред обитания отличается особенностями воздей

Концепции устойчивого развития
  Появление на Земле около 40 тыс. лет назад человека разумного Вернадский рассматривал как естественную часть биосферы, а деятельность его – как важнейший геологический фактор. С поя

Наследственной информации
Генетика – наука, изучающая наследственность и изменчивость живых организмов. Наследственность заключается в способности организмов передавать осо

Основные генетические процессы. Биосинтез белка
  Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменятьс

Основные законы генетики
  Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения едино­образны. Например, при скрещивании ра

Наследственная и ненаследственная изменчивость
  Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости. Выделяют ненаследственную и

Как факторы дальнейшей эволюции
  Генетическая (генная)инженерия – совокупность методов конструирования лабораторным путем (in vitro) генетических структур и насле

Антропогенез
  Человек – это целостное единство биологического (организменого), психического и социального уровней, которые формируются из природного и социального, наследственного и прижизненно п

Физиологические особенности человека
  Физиология изучает функции живого организма, отдельных органов, систем органов, а также механизм регуляции этих функций. Человек представляет собой сложную саморегулирующую

Основные закономерности роста человека.
Кривая роста человека, рост в пренатальном и постнатальном периодах, абсолютный рост, скорость роста. Пренатальный рост, общая характеристика пренатального роста, из­менение скорости роста от оплод

Здоровье человека
  По определению Всемирной организации здравоохранения (ВОЗ), здоровье человека –это состояние полного физического, душевного и социального благополучия. Здоро

Группировка факторов риска и их значение для здоровья
Группы факторов риска   Факторы риска   Значение для здоровья, % (для России) Биологические факторы

Эмоции. Творчество
Эмоции представляют собой реакции животных и человека на воздействие внешних и внутренних раздражителей, имеющие ярко выраженную субъективную окраску и охватывающие все виды чу

Работоспособность
Работоспособность – это способность к выполнению работы. С физиологической точки зрения работоспособность определяет возможности организма при выполнении работы, к поддержанию структуры и энергозап

Принципы мудрого отношения к жизни
Физические нагрузки успокаивают и помогают переносить душевные травмы. Умственное перенапряжение, неудачи, неуверенности, бесцельное существование – самые вредоносные стрессоры. Среди всех работ, с

Противоречия современной цивилизации
  Сто пятьдесят лет тому назад в биосфере сложилось определенное равновесие. Человек использовал относительно небольшую часть ресурсов природы, перерабатывал ее для обеспечения своих

Понятие биоэтики и ее принципы
  Для того чтобы предупредить развитие такого пессимистического сценария эволюции биосферы, в последние годы набирает силу новая наука –биоэтика, находящаяся на стыке биологии

Медицинская биоэтика
  Одной из очень важных проблем биоэтики является также проблема «человек–медицина». Она включает, например, такие вопросы, как целесообразность поддержания жизни смертельно больного

Принципы поведения животных
Биоэтику следует рассматривать как естественное обоснование человеческой морали. Когда мы, люди, говорим «мы все люди и ничего человеческое нам не чуждо» на самом деле наше поведение похоже

Биосфера и космические циклы
  Биосфера – живая открытая система. Она обменивается энергией и веществом с внешним миром. В данном случае внешний мир – это безбрежное космическое пространство. Извне на Зе

Биосфера и ноосфера
Факторы эволюции и этапы развития биосферы.Эволюция биосферы на протяжении большей части ее истории осуществлялась под влиянием двух главных факторов: 1) естественных

Современное естествознание и экология
  Экология вызывает в настоящее время особый интерес как в различных естественно-научных дисциплинах, так и в гуманитарном знании. Интегрирующее направление в этой науке связано с исс

Экологическая философия
  Задача современной экологической науки – искать такие способы воздействия на окружающую среду, которые помогли бы предотвратить катастрофические последствия и практическое использов

Планетарное мышление
  Когда наступает время для определенной идеи, системы взглядов, то они начинают проявляться самыми различными способами, в широком многообразии форм и видов. Об этом явлении часто го

Ноосфера
  Под ноосферой понимается сфера разума, но разработано это понятие еще совершенно недостаточно. Однако точка зрения, согласно которой ноосфера представляет собой одно из природных ра

Самоорганизация в живой и неживой природе
  В последние годы работами ряда авторов, и, прежде всего, И. Пригожина и П. Гленсдорфа, была развита термодинамика сильно неравновесных систем, в которых связь между термодинамически

Пространственные диссипативные структуры
  Простейшим примером пространственныx структур являются ячейки Бенара, обнаруженные им в 1900 г. Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней п

Временные диссипативные структуры
  Примером временной диссипативной структуры является химическая система, в которой протекает так называемая реакция Белоусова–Жаботинского. Если система отклонилась от

Химическая основа морфогенеза
  В 1952 г. вышла работа А. Тьюринга «О химической основе морфогенеза». Морфогенезом называется возникновение и развитие сложной структуры живого

Самоорганизация в живой природе
  Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы. Если в нек

Самоорганизация в неравновесных системах
  Рассмотрим простую симметричную бифуркацию, приведенную на рис. 5. Выясним, как возникает самоорганизация и какие процессы происходят, когда ее порог оказывается превзойденным.

Типы процессов самоорганизации
  Различают три типа процессов самоорганизации: 1)процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня но

Принципы универсального эволюционизма
  Принцип универсального эволюционизма одна из доминирующих современных концепций в науке. Сформировавшийся вначале как результат обобщения естественно-научных знаний, он стал постепе

Самоорганизация в микромире. Формирование элементного состава вещества материи
  На основе достижений ядерной физики в первой половине прошлого века удалось понять механизм образования химических элементов в природе. В 1946–1948 гг. американский физик Д. Гамов р

Химическая эволюция на молекулярном уровне
До возникновения жизни на Земле в течение длительного времени, продолжавшегося около двух миллиардов лет, происходил химическая эволюция неживой (косной материи). В связи с существованием

Самоорганизация в живой и неживой природе
  На основе данных археологии, палеонтологии и антропологии Ч. Дарвин, как известно, доказал, что все многообразие живых организмов сформировалось в процессе длительной эволюции из бо

Самоорганизация Вселенной
Еще менее ста лет назад в науке господствовала точка зрения об однородной, стационарной, бесконечной во времени и в пространстве Вселенной. Однако после создания А. Эйнштейном общей теории относите

Концепции эволюционного естествознания
  Краткий анализ процессов, протекающих в микро-, макро- и мегамире, позволяет говорить о том, что на всех уровнях организации материи доминирующими являются эволюционные процессы. Эт

Структурность и целостность в природе. Фундаментальность понятия целостности
  Важнейшим атрибутами природы является структурность и целостность. Они выражают упорядоченность ее существования и те конкретные формы, в которых она проявляется. Структура п

Принципы целостности современного естествознания
  Следует отметить, что в настоящее время бурно развивается философия науки, которая существенно отличается от естествознания и по своим целям, и по методам исследования. Философия на

Самоорганизация в природе в терминах параметров порядка
  Система может быть определена как комплекс взаимодействующих элементов (определение Берталанфи). Систему можно определить как любую совокупность переменных, которую

Методология постижения открытого нелинейного мира
  XXIвек характеризуется бурным экспоненциальным ростом научных знаний. Человечество знает и умеет значительно больше, чем может осмысленно использовать. Это породило серьезную про­бл

Основные черты современного естествознания
  Выделим несколько характерных черт современного естествознания. 1. Развитие естествознания в XVII-XVIII вв. и вплоть до конца XIX в. происходило под подавляющим превосходст

И синергетическая среда в постижении природы
  Синергетический подход к познанию, точнее к постижению Природы, расставляет точки над и в том смысле, что становится более понятным, что знания не приобретают как вещь, ими овладева

Принципы нелинейного образа мира
  Первая научная картина мира была построена И. Ньютоном, несмотря на внутреннюю парадоксальность, она оказа­лась удивительно плодотворной, на долгие годы, предопределив самодвижение

От автоколебаний к самоорганизации
  Для пояснения поведения открытых систем и их постижения удобным является использование аппарата нелинейных колебательных систем, разработанного в радиоэлектронике и связи, на фазовы

Формирование инновационной культуры
  Инновационная культура – это знания, умения и опыт целенаправленной подготовки, комплексного внедрения и всестороннего освоения новшеств в различных областях человеческой жиз

ГЛОССАРИЙ
Абиогенный – абиогенная эволюция, абиогенное вещество – неживого, небиологического происхождения. Абиогенез – самопроизвольное зарождение жизни, в

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги