Момент количества движения

Хотя до сих пор мы рассматривали только специальный слу­чай твердого тела, свойства момента и его математическое выра­жение интересны даже тогда, когда тело не твердое. Можно доказать очень интересную теорему: подобно тому как внешняя сила равна скорости изменения величины р, которая называется пол­ным импульсом системы частиц, так и момент силы равен ско­рости изменения некоторой величины L, называемой моментом количества движения, или угловым моментом группы частиц. Чтобы доказать это, рассмотрим систему частиц, на которую действуют силы, и посмотрим, что произойдет с системой в результате действия вращающих моментов, созданных этими силами. Для начала давайте возьмем только одну частицу. Такая частица с массой m и осью О изображена на фиг. 18.3.

 

 


 

Фиг. 18.3. Движение частиц относительно оси вращения С

 

Она не обязательно должна вращаться по окружности вокруг оси О, а может двигаться и по эллипсу, подобно планете вокруг Солнца, или по какой-нибудь другой кривой. Главное то, что она движется, что на нее действует сила, которая ускоряет ее в соответствии с обычными законами: x-компонента силы равна массе, умноженной на x-компоненту ускорения, и т. д. Но по­смотрим теперь, как действует момент силы. Он, как вы знаете, равен xFy-yFx, а х- и у-компоненты силы в свою очередь рав­ны массе, умноженной соответственно на х- и y-компоненту ускорения, так что


 

 


Хотя сразу и не видно, что это выражение является производ­ной от какой-то простой величины, но на самом деле оно равно производной от xm(dy/dt)-ym(dx/dt). Действительно,

 

Оказывается, таким образом, что момент силы равен скорости изменения со временем некоторой величины! Давайте обратим внимание на эту величину и прежде всего дадим ей имя. Она будет называться моментом количества движения, или угловым моментом, и обозначаться буквой L


 

Хотя во всех наших рассмотрениях мы не принимали в рас­чет теорию относительности, тем не менее второе выражение для L верно и при учете ее. Итак, мы нашли, что у обычного импульса также существует вращательный аналог — угловой момент, который связан с компонентами импульса точно так же, как и момент силы связан с компонентами силы! Так что если мы хотим вычислить момент количества движения отно­сительно какой-то оси, то должны взять тангенциальную сос­тавляющую импульса и умножить ее на радиус. Другими сло­вами, угловой момент показывает, насколько быстро движется частица вокруг какого-то центра, ведь он учитывает только тангенциальную часть импульса. Более того, чем дальше от центра удалена линия, по которой направлен импульс, тем больше будет угловой момент. Точно так же, поскольку гео­метрия в этом случае та же, что и в случае момента силы, су­ществует плечо импульса (оно, разумеется, не совпадает с плечом силы, действующей на частицу), которое равно расстоя­нию линии импульса от оси. Таким образом, угловой момент равен просто величине импульса, умноженного на его плечо. Точно так же, как и для момента силы, для углового момента мы можем написать следующие три формулы:

L=хрy-урх=rpтанг•Плечо импульса. (18.17)

Момент количества движения, как и момент силы, зависит от положения оси, относительно которой он вычисляется.

Прежде чем перейти к рассмотрению более чем одной части­цы, применим полученные выше результаты к движению пла­неты вокруг Солнца. В каком направлении действует сила? Конечно, по направлению к Солнцу. А какой при этом будет момент силы? Разумеется, все зависит от того, в каком месте мы выберем ось, однако результат получится совсем простым, если в качестве точки вращения выбрать само Солнце. Посколь­ку момент силы равен силе, умноженной на ее плечо, или ком­поненте силы, перпендикулярной к радиусу r, умноженной на r, то в этом случае нет никакой тангенциальной составляющей силы, а поэтому момент силы относительно оси, проходящей через Солнце, равен нулю. Следовательно, момент количества движения должен оставаться постоянным. Давайте-ка посмот­рим, что это означает. Произведение тангенциальной компонен­ты скорости на массу и радиус, будучи моментом количества движения, должно оставаться постоянным, потому что скорость его изменения есть момент силы, который в нашем случае равен нулю. Это означает, что остается постоянным произведение тангенциальной компоненты скорости на радиус, поскольку масса-то уж, конечно, не изменяется. Но такая величина, ха­рактеризующая движение планеты, уже вычислялась нами раньше. Предположим, что мы взяли маленький промежуток времени Dt. Какое расстояние пройдет планета при своем дви­жении из точки Р в точку Q (фиг. 18.3)? Как велика площадь той области, которую «заметает» прямая, соединяющая пла­нету с Солнцем? Пренебрегая площадью QQ'P, которая очень мала по сравнению с OPQ, находим, что площадь этой области равна половине основания PQ, умноженного на высоту OR. Другими словами, «заметенная» площадь равна половине про­изведения скорости на ее плечо. Так что скорость изменения этой площади пропорциональна моменту количества движения, который остается постоянным. Итак, мы получим, что закон Кеплера о равных площадях за равные промежутки времени является просто словесным описанием закона сохранения мо­мента количества движения, когда моменты внешних сил от­сутствуют.