Суперпозиция решений

Перейдем теперь к другой интересной проблеме. Предполо­жим, что нам задана какая-нибудь внешняя сила Fa (например, периодическая сила с частотой w=wа, но наши выводы будут верны для любой зависимости силы от времени) и мы нашли движение, соответствующее этой силе (переходные движения можно учитывать или не учи­тывать, это неважно). Пред­положим, что мы решили еще одну задачу — нашли движе­ние в случае действия силы Fb. После этого предположим, что кто-то вбежал в комнату и сказал: «На контрольной за­дают задачу с силой Fa+Fb. Что нам делать?» Конечно, мы решим эту задачу — ведь мы сразу обнаружим одно замечательное свойство: сумма реше­ний ха и хb, получаемых в том случае, если брать силы по от­дельности, будет решением новой задачи. Для этого надо только вспомнить о (25.3):

L(xa+xb)=L(xa)+L(xb)=Fa(t)+Fb(t). (25.8)

Это пример того, что называют принципом суперпозиции для линейных систем, и это очень важная вещь. Дело обстоит так: если мы сможем представить сложную силу в виде суммы не­скольких более простых сил и сможем решить уравнение для каждой силы в отдельности, то мы сможем решить и первона­чальное уравнение, потому что для этого надо просто объеди­нить куски решения так же, как мы объединяли отдельные силы, чтобы получить полную силу (фиг. 25.1).


 

Фиг. 25.1. Пример принципа суперпозиции для линейных си­стем.

 

Еще один пример принципа суперпозиции. В гл. 12 (вып. 1) говорилось об одном из важнейших фактов, вытекающих из за­конов электричества. Если нам задано распределение зарядов qa, можно найти электрическое поле Ев, порождаемое этими заря­дами в точке Р. Другое распределение зарядов qb порождает в этой же точке поле Eb. Оба эти распределения, действуя вме­сте, породят в точке Р поле Е, которое представляет собой сумму полей Еа и Еb. Иначе говоря, поле, соответствующее совокуп­ности многих зарядов,— это векторная сумма полей, соответ­ствующих отдельным зарядам. Аналогия с предыдущим приме­ром бросается в глаза: ведь если мы знаем результат действия отдельных сил, то отклик на силу, являющуюся суммой этих сил, будет суммой отдельных откликов.


 

 

Фиг. 25.2. Принцип суперпо­зиции в электростатике.

 

Причина справедливости принципа суперпозиции в электри­честве состоит в том, что основные законы электричества, опреде­ляющие электрическое поле (уравнения Максвелле), — это линейные дифференциальные уравнения, обладающие свойством (25.3). Силам в этих уравнениях соответствуют заряды, порождающие электрическое поле, а уравнения, определяющие электрическое поле по заданным зарядам,— линейные уравнения.

Чтобы придумать еще один пример принципа суперпозиции, спросите себя, как вам удается настроить свой радиоприемник на определенную радиостанцию, хотя одновременно работает очень много станций. Сигналы радиостанций — это колеблю­щиеся электрические поля очень высокой частоты, действую­щие на антенну радиоприемника. Амплитуда этих колебаний, правда, меняется, их модулирует голос диктора, но скорость этих изменений очень мала и об этом можно пока забыть. Когда вы слышите: «Станция работает на частоте 780 килогерц», это значит, что частота излучаемого антенной радиостанции элект­ромагнитного поля равна 780 000 колебаний в секунду и это поле с точно такой же частотой раскачивает электроны в ан­тенне вашего приемника. Но ведь в то же самое время поблизо­сти может работать и другая радиостанция на другой частоте, скажем на частоте 550 кгц. Эта станция тоже раскачивает электроны вашей антенны. Как же отделяются сигналы, посту­пающие в приемник с частотой 780 кгц, от сигналов, имею­щих частоту 550 кгц? Ведь вы же не слышали голоса обоих дикторов одновременно.


Первая часть электрической цепи радиоприемника — это линейная цепь. По принципу суперпозиции ее отклик на элект­рическое поле Fа+Fb равен хаb. По всему выходит, что нам придется слушать обоих дикторов сразу. Но вспомним, что в резонансной цепи кривая отклика х на единичную силу F за­висит от частоты примерно так, как это изображено на фиг. 25.3.

 

 

Фиг. 25.3. Резонансная кривая с острым максимумом.

 

В цепи с очень большим значением Q отклик имеет очень острый максимум. Предположим, что обе станции имеют примерно одинаковую мощность, поэтому обе силы имеют примерно оди­наковую амплитуду. Отклик равен сумме откликов ха и хb, но на фиг. 25.3 ха громаден, а хb очень мал. Таким образом, хотя оба сигнала одинаковы по силе, в приемнике они проходят через остро резонансную цепь, настроенную на частоту wа (частоту передач одной из станций), и отклик на эту частоту (станцию) значительно больше отклика на все остальные. Поэтому, не­смотря на то что на антенну действуют оба сигнала, полный отклик почти целиком составлен из частоты wа, и мы можем выб­рать ту станцию, какую пожелаем.

Несколько слов о механизме настройки. Как мы настраиваем радиоприемник? Мы изменяли частоту w0, меняя L или С цепи, потому что частота цепи зависит от комбинации L и С. Боль­шинство радиоприемников устроено так, что в них меняется зна­чение С. Поворачивая ручку настройки приемника, мы изменяем собственную частоту цепи. Пусть какому-то положению ручки соответствует частота wс; если нет радиостанций, работающих на этой частоте, приемник молчит. Вы продолжаете изменять емкость С цепи, пока не построите кривую отклика с резонан­сом при частоте wb, тогда вы услышите другую станцию. Вот так и настраивается радиоприемник; все дело в принципе супер­позиции, в сочетании с резонансным откликом.

Чтоб закончить обсуждение, давайте подумаем, как посту­пить при анализе линейных задач с заданной силой, когда сила очень сложно зависит от времени. Можно поступать по-разному, но есть два особенно удобных общих метода решения таких за­дач. Первый метод: предположим, что мы можем решить зада­чу в некоторых частных случаях, например в случае синусои­дальных сил разных частот. Решать линейные уравнения в таких случаях — детская забава. Пусть нам и встретился этот «детский» случай. Теперь встает вопрос, нельзя ли представить любую силу в виде суммы двух или более «детских» сил? Мы уже показали на фиг. 25.1 довольно хитрую зависимость силы от времени; если туда добавить еще несколько синусоид, то ре­зультирующая кривая будет выглядеть еще сложнее. Таким образом, простенькие «детские» силы могут породить очень сложную силу. Верно и обратное: практически каждая кривая может быть представлена в виде бесконечной суммы синусоидаль­ных волн разной длины волн (или частоты). Таким образом, мы знаем, как представить заданную силу F в виде синусоидальных волн, поэтому решение х можно представить в виде суммы F синусоидальных волн, каждая из которых умножается на эф­фективное отношение х к F. Такой метод решения называют ме­тодом преобразования, Фурье, или анализом (разложением) Фурье. Мы не будем сейчас делать такого разложения; пока до­статочно только идеи.

Очень интересен другой способ решения сложных задач. Предположим, что кто-то после больших умственных усилий решил заданную нам задачу в случае одной частной силы — импульсной. Сила внезапно и быстро действует на систему, затем выключается и все опять спокойно. Нам теперь достаточно решить такую задачу лишь в случае единичной силы, потом умножением на подходящее число мы сможем получить любые силы. Мы знаем, что осциллятор откликается на импульсную силу затухающими колебаниями. А как быть в случае другой силы, например силы, изображенной на фиг. 25.4?


Фиг. 25.4. Сложную силу можно представить как последователь­ность коротких импульсов.

 

Такую силу можно представить в виде последовательных ударов молотком. Сначала всюду стоит тишина, потом кто-то берет в руки молоток и внезапно раздаются равномерные уда­ры — удар, удар, удар, удар, ... и опять все тихо. Иначе говоря, непрерывно действующую силу можно представить в виде ряда последовательных импульсов, быстро следующих один за дру­гим. Мы знаем последствия одного импульса, а последствием серии импульсов будет ряд затухающих колебаний; нарисуйте кривую колебаний для первого импульса, затем, немного от­ступя, такие же кривые для второго импульса, третьего и т. д. Потом сложите все кривые. Таким образом математически можно представить полное решение в случае произвольной силы, если можно решить задачу для импульса. Ответ для любой силы можно получить путем интегрирования. Это метод функции Грина. Функция Грина — это отклик системы на отдельный импульс, а метод функции Грина — это метод ана­лиза действия силы суммированием откликов на импульсы.

Физические принципы, лежащие в основе обоих методов, очень просты; они просто напрашиваются, если понять смысл линейного уравнения, но математические методы содержат до­вольно сложные интегрирования и т. д.; мы мало подготовлены, чтобы прямо атаковать эти методы. К этому вы еще вернетесь, когда поднабьете руку в математике. Но сама идея методов, право, очень проста.

Наконец, скажем еще, почему линейные системы так важны. Ответ прост: потому что мы умеем решать линейные уравнения! Поэтому большую часть времени мы будем решать линейные задачи. Вторая (и главная) причина заключается в том, что основные законы физики часто линейны. Например, уравнения Максвелла для законов электромагнетизма — линейные урав­нения. Великие законы квантовой механики, насколько нам они известны, тоже сводятся к линейным уравнениям. Вот почему мы так много времени уделяем линейным уравнениям: если мы поняли линейные уравнения, мы готовы в принципе понимать очень многие вещи.

Упомянем еще другие ситуации, когда возникают линейные уравнения. Когда отклонения малы, многие функции можно приближенно заменить линейными. Например, точное уравне­ние движения маятника гласит

d2q/dt2=-g/Lsinq. (25.9)

Это уравнение решается при помощи эллиптических функций, но легче его решить численно, как мы это делали в гл. 9 (вып. 1) при изучении ньютоновых законов движения. Большинство нелинейных уравнений вообще можно решить лишь численно. Для малых углов sinq практически равен q, и в этом случае можно перейти к линейному уравнению. На этом примере мож­но сообразить, что есть много обстоятельств, при которых ма­лые эффекты линейны (здесь это отклонения маятника на малые углы). Другой пример: если на пружине качается небольшой грузик, сила пропорциональна растяжению пружины. Если сильно потянуть за пружину, она может и порваться, значит, в этом случае сила совсем иначе зависит от расстояния! Линей­ные уравнения очень важны. Они настолько важны, что физики и инженеры, пожалуй, половину своего времени тратят на ре­шение линейных уравнений.