Второе начало термодинамики. Цикл Карно

 

Второе начало термодинамики:Невозможно построить периодически действующую тепловую машину, которая бы всю подводимую к ней теплоту превращала в работу, т.е. всегда .

Французский инженер Сади Карно предложил идеальный цикл, который даёт максимальное значение КПД. Этот цикл состоит из двух изотерм и двух адиабат и носит название цикла Карно.

- изотермическое расширение при , - адиабатическое расширение , - изотермическое сжатие при , - адиабатическое сжатие .

Рис. 2.2 Цикл Карно в координатах (P, V).

Вычислим КПД цикла Карно для идеального газа. При изотермическом процессе внутренняя энергия идеального газа остаётся постоянной. Поэтому количество полученной газом теплоты равно работе , совершаемой газом при переходе из состояния 1 в состояние 2 (рис. 2.2). Эта работа равна где – масса идеального газа в тепловой машине.

Количество отдаваемой холодильнику теплоты равно работе , затраченной на сжатие газа при переходе его из состояния 3 в состояние 4. Эта работа равна.

Для того, чтобы цикл был замкнутым, состояние 1 и 4 должны лежать на одной и той же адиабате. Отсюда вытекает условие:

.

Аналогично для состояний 2 и 3 справедливо условие:

.

Разделив одно соотношение на другое, приходим к условию замкнутости цикла:

.

Подставляя и в выражение для КПД, получим:

. (2.2)

В результате получим формулу для КПД цикла Карно:

,

где - температура нагревателя, - температура холодильника. КПД цикла Карно является максимальным КПД из всех возможных циклов, осуществляемых в данных температурных интервалах и .

Соотношение (2.2) составляет содержание теоремы Карно для обратимого цикла:

.

Для необратимого цикла теорема Карно принимает вид:

.

В общем случае можно объединить эти две записи теоремы Карно:

. (2.3)

Преобразуем (2.3) следующим образом:

, , или

В результате получим

.

Для обратимого цикла Карно: ,

для необратимого цикла Карно: .

Тогда в случае произвольного обратимого цикла можно получить:

, (2.4)

а в случае произвольного необратимого цикла:

.

Соотношение (2.4) показывает, что величина, стоящая под знаком интеграла, является функцией состояния. Эта функция состояния обозначается буквой S и называется энтропией. Наряду с внутренней энергией U энтропия S играет важную роль в термодинамике.