рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Краткие теоретические сведения

Краткие теоретические сведения - раздел Образование, ОБЩИЕ СВЕДЕНИЯ   В Жидкостях И Газах При Перемещении Одних Слоев Относительно ...

 

В жидкостях и газах при перемещении одних слоев относительно других возникают силы внутреннего трения, или вязкости, которые определяются законом Ньютона:

 

(1)

 

где - коэффициент внутреннего трения, или коэффициент динамической вязкости, или просто вязкость; – модуль градиента скорости, который показывает, как быстро изменяется величина скорости в направлении внутренней нормали к поверхности слоя; DS – поверхность соприкасающихся слоёв (рис. 1).

Уравнение (1) является определяющим для установления единиц измерений коэффициента динамической вязкости. Размерность вязкости ML-1×T-1. В СИ h измеряется в Па×с=кг/(м×с), а в СГС в пуазах. П (пуаз) = г/(cм×с).

Механизм внутреннего трения в жидкостях и газах неодинаков, так как в них различен характер теплового движения молекул.

Вязкость жидкости обусловлена молекулярным взаимодействием, ограничивающим движение молекул. Каждая молекула жидкости находится в потенциальной ямы, создаваемой соседними молекулами. Поэтому молекулы жидкости совершают колебательное движения около положения равновесия, то есть внутри потенциальной ямы. Глубина потенциальной ямы незначительно превышает среднюю кинетическую энергию, поэтому, получив дополнительную энергию при столкновении с другими молекулами, она может перескочить в новое положение равновесия. Энергия, которую должна получить молекула, чтобы из одного положения перейти в другой называется энергия активации W, а время нахождения молекулы в положении равновесия – временем “оседлой жизни” t. Перескок молекул между соседними положениями равновесия является случайным процессом. Вероятность того, что такой перескок произойдет за время одного периода t0, в соответствии с законом Больцмана, составляет:

 

(2)

 

Обратная величина определяет среднее число колебаний, которое должна совершить молекула, чтобы покинуть положение равновесия. Среднее время “оседлой жизни” молекулы:

 

, (3)

 

где k – постоянная Больцмана; - средний период колебаний молекулы около положения равновесия.

Коэффициент динамической вязкости зависит от , чем реже молекулы меняют положение равновесия, тем больше вязкость. Используя модель скачков молекул, Я.И. Френкель показал, что вязкость изменяется по экспоненциальному закону:

 

(4)

 

где А – константа, определяемая свойствами жидкости.

Формула (4) является приближенной, но она достаточно хорошо описывает вязкость многих жидкостей в том числе и глицерина в интервале температур, задаваемом в данной работе. Строгая теория вязкости носит квантовый характер и является очень сложной.

Из формулы (4) видно, что с уменьшением температуры вязкость жидкости возрастает. В ряде случаев она становится настолько большой, что жидкость затвердевает без образования кристаллической решетки. В этом заключается механизм образования аморфных твердых тел.

При малых скоростях движения тела в жидкости слой жидкости, непосредственно прилегающий к телу, прилипает к нему и движется со скоростью тела. По мере удаления от поверхности тела скорость слоев жидкости будет уменьшаться, но они будут двигаться параллельно. Такое слоистое движение жидкости называется ламинарным. При больших скоростях движения жидкости становится неустойчивым и называется турбулентным, при котором частицы жидкости движутся по сложным траекториям со скоростями, изменяющимися беспорядочным образом. В результате происходит перемешивание жидкости и образуются вихри.

Характер движения жидкости определяются безразмерной величиной Re, называемой числом Рейнольдса. Re зависит от формы тела и свойств жидкости. При движении шарика радиусом R со скоростью в жидкости с плотностью rж:

 

(5)

 

При малых Re (<10) движение жидкости будет ламинарным. В этом случае на тело будет действовать сила сопротивления, пропорциональная скорости:

 

, (6)

 

где r – коэффициент сопротивления.

Для тела сферической формы

 

 

Сила сопротивления шарика примет вид:

 

(7)

 

Формула (7) называется законом Стокса.

При падении шарика в жидкости на него действуют силы: сопротивления , тяжести , выталкивающая . Запишем уравнение движения в проекциях на направление движения:

 

. (8)

 

Решение уравнения (8) описывает характер движения шарика на всех участках падения. Прежде чем привести это решение, проанализируем его качественно.

Примем при t = 0 скорость . Перепишем уравнение (8) в видe:

 

, (9)

 

где - характерная величина, имеющая размерность времени и называется временем релаксации.

В начале движения скорость мала, слагаемым в уравнении (9) можно пренебречь и оно примет вид:

 

. (10)

 

Из уравнения (10) видно, что на начальном этапе шарик движется с ускорением:

 

 

Согласно уравнению (8), по мере увеличения скорости возрастает сила сопротивления и ускорение уменьшается. При большом времени движения (t®¥) сила сопротивления уравновешивается равнодействующей сил и , и шарик будет двигаться равномерно с установившейся скоростью . Так как при равномерном движении , то из уравнения (9) находим:

 

. (11)

 

Из приведенных рассуждений ясно, что скорость будет возрастать с увеличением времени движения и при t®¥, , т.е. эта зависимость будет экспоненциальной. Строгую зависимость дает решение дифференциального уравнения (9). Опуская математическую часть задачи, приведем окончательный результат:

(12)

 

График зависимости (12) представлен на рис. 2 (кривая линия б).

Проведем касательную к начальному участку кривой (см. рис. 2). Так как угловой коэффициент этой прямой числено равен а0, то уравнение этой линии будет и согласно (11) она пересечет при t = tр. Отсюда можно дать одну из трактовок времени релаксации как времени, за которое скорость тела достигла бы установившегося значения , если бы оно двигалось в среде без трения только под действием внешних сил (в данном случае силы тяжести и выталкивающей силы).

Чем больше будет ускорение а0, т.е. круче касательная к кривой , тем меньше tр. Следовательно, время релаксации характеризует быстроту приближения к установившемуся значению скорости, поэтому его также называют временем переходного процесса. На практике принимается, что переходные процессы вида (12) заканчиваются за время ~ 3tр. За это время тело пройдет расстояние:

Итак, после прохождения шариком расстояния его движение можно считать равномерным. Уравнение движения (24) в этом случае примет вид:

 

. (14)

 

Сила тяжести

 

, (15)

 

где r - плотность вещества шарика.

Выталкивающая сила определяется по закону Архимеда:

 

(16)

 

Подставив (15), (16) и (7) в уравнение (14), получим

 

.

 

Отсюда найдем

 

. (17)

 

Измерив и R, взяв табличные значения плотности вещества шарика и глицерина, можно определить вязкость глицерина по формуле (17).

 

Описание установки

 

Схематично установка изображена на рис. 3.
1 – блок управления ; 2 - термостат; 3 – стеклянный цилиндр с двойными стенками; 4 - термометр.

В термостате вода нагревается и по резиновым шлангам насосом, установленным внутри термостата, прокачивается через полость между внутренними и внешними стенками цилиндра. В результате нагревается глицерин в цилиндре. Температура воды определяется по термометру. Считается, что температура глицерина такая же, как у воды.

 

– Конец работы –

Эта тема принадлежит разделу:

ОБЩИЕ СВЕДЕНИЯ

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ Погрешности измерений физических величин Под измерением... Классификация погрешностей измерений...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Краткие теоретические сведения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОБЩИЕ СВЕДЕНИЯ
  Выполнение лабораторных работ является обязательной составной частью при изучении дисциплины “Физика”. Настоящая работа по разделу “Механика” составлена в соответствии с программой

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ
На каждое лабораторное занятие студент должен приносить с собой: тонкую тетрадь, физический практикум, в котором дано описание выполняемой лабораторной работы, калькулятор, ручку, карандаш

ФОРМА ОТЧЕТА
Отчет каждой работы следует готовить в отдельной тонкой тетради (можно с двумя листами в зависимости от объема работы). Первый лист оформляется как титульный:    

Погрешности измерений физических величин
  Под измерением понимается сравнение измеряемой величины с другой величиной, принятой за единицу измерения. Измерения разделяют на прямые и косвенные. При прямых измерениях

Обработка результатов прямых измерений
  Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше апп

Обработка результатов косвенных измерений
  Пусть искомая физическая величина y связана с другими величинами x1, x2, ..., xn некоторой функциональной зависимостью

Действия с приближенными числами
  Многие считают, чем больше цифр содержит вычисленная или измеренная величина, тем она точнее. Вопрос о различной точности вычисления очень важен, так как завышение точности вычислен

Построение графиков
Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необ

Измерительные приборы и учет их погрешностей
  Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, ч

Краткие теоретические сведения
Случайной называется величина, изменяющаяся от опыта к опыту нерегулярно и, на первый взгляд, беспорядочно. Результат каждого отдельного измерения случайной величины практически непредсказуем. Одна

Измерения и обработка результатов
  В данной работе моделирование случайной величины осуществляется следующим образом. При помощи обычных часов с секундной стрелкой задают некоторый промежуток времени t и измер

Описание установки и метода измерений
  Соотношения (2) и (3) являются следствиями второго закона Ньютон

Порядок выполнения работы
  1. Ознакомиться с машиной Атвуда. 2. Скомпенсировать силу трения в блоке, добавляя к правому грузу, движущемуся вниз, небольшой грузик (кусочек пластилина или проволоки). П

Порядок выполнения работы
  1. Ознакомиться с машиной Атвуда. 2. Скомпенсировать силу трения в блоке (согласно п. 1 в задании 1). 3. На правый груз поместить перегрузок известной массы m

Библиографический список
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 1.1–1.4, 2.1–2.4. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 20

ОПРЕДЕЛЕНИЕ СРЕДНЕЙ СИЛЫ УДАРА И КОЭФФИЦИЕНТА ВОССТАНОВЛЕНИЯ ПРИ СОУДАРЕНИИ ШАРА С ПЛОСКОЙ СТЕНКОЙ
  Цель работы:измерение времени соударения металлических тел, определение средней силы удара и коэффициента восстановления скорости. Оборудование:

Описание установки и метода измерений
  Металлический шар 1 подвешен на тонкой проволоке (рис. 1). При в

Порядок выполнения работы
  1. Включить в электросеть электронный секундомер. Прогреть прибор в течение одной минуты. 2. Отвести шар от положения равновесия на угол α = 20о – 30о

Библиографический список
1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 2.1–2.5, 3.1–3.4, 5.1. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 5–7

Описание установки и метода измерений
  Основание 1 оснащено регулируемыми ножками 2, которые позволяют провести выравнивание прибора. В основании закреплена колонка 3, на которой зафиксированы нижний кронштейн 4 и

Проверить закон сохранения импульса
  В изолированной системе тел векторная сумма импульсов всех тел, входящих в систему (импульс системы), не изменяется с течением времени:  

Определить среднюю силу удара
  Изменение импульса тела равно импульсу средней силы, действующей на тело  

Порядок выполнения работы
  1. Провести корректировку осевой установки шаров. Для этого шар, который расположен выше, повернуть так, чтобы риски на шарах находились на одном уровне. 2. Установить элек

Библиографический список
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 2.4–2.5, 5.1, 5.6. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2

Описание установки и метода измерений
  Баллистический маятник представляет собой цилиндр массой M

Порядок выполнения работы
  1. Масса пули и маятника указаны на установке. 2. Измерить линейкой расстояние l от точки подвеса до точки крепления нити к маятнику. 3. Привести маятник в

КИНЕМАТИЧЕСКИМ МЕТОДОМ
  Так как скорость пули в этой работе мала, и сопротивлением воздуха можно пренебречь, то ее можно определить кинематическим методом.

Порядок выполнения работы
1. Произвести 5 выстрелов из пистолета, расположенного на столе, в ящик с песком или лист бумаги, расположенный на полу. После каждого выстрела по отметке пули на песке, или на листе, измерить даль

Библиографический список
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 1.1–1.3, 3.2–3.4, 5.1. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академи

Описание установки и метода измерений
  Маховик состоит из массивного диска и шкива, насаженных на вал.

Порядок выполнения работы
  1. Отрегулировать длину нити так, чтобы груз не касался основания штатива. 2. Измерить штангенциркулем диаметр шкива, определить массу груза m. Результаты записать в

Библиографический список
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 3.2, 3.3, 4.1, 4.2. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия,

Описание установки и метода измерений
Рис. 1 Устройство установки показано

Порядок выполнения работы
  1. На диске маятника укрепить произвольно выбранное кольцо. 2. Произвести корректировку установки маятника, обращая внимание на то, чтобы его ось была параллельна основанию

Библиографический список
  1.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 16–18. 2. Савельев, И. В. Курс общей физики в 3-х т. Т.1 / И. В. Савельев.– СПб.: Лань, 2005. – §

ИЗУЧЕНИЕ ЗАКОНОВ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ И ОПРЕДЕЛЕНИЕ МОМЕНТА СИЛЫ ТРЕНИЯ
  Цель работы: построить для маховика график зависимости углового ускорения b от момента силы натяжения Мн и определить из него момент силы трения

Описание установки и метода измерений
  Маховик состоит из диска 1 и шкива 2, насаженных на вал (рис. 1)

Порядок выполнения работы
  1. Измерить штангенциркулем диаметр D шкива. 2. Вращая маховик, поднять висящий на нити груз на высоту h. Измерить высоту с помощью линейки (отсчет вести по н

Библиографический список
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 4.1–4.3. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 6

Описание установки и метода измерений
  Маятник Обербека (рис. 1) представляет собой маховик, которому п

Порядок выполнения работы
  1. Определить массу грузов m1 и m2 (m1 взять примерно вдвое больше m2). Определить высоту h, с которой

Библиографический список
1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 4.1–4.3. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 6, 16, 18.

Описание установки и метода измерений
  Твердое тело, подвешенное на упругой нити, будет совершать крутильные колебания, если его повернуть на некоторый угол относительно вертикальной оси, совпадающей с нитью подвеса, и з

Порядок выполнения работы.
  1. Поворотом нижнего диска привести систему в колебательное движение. Следите за тем, чтобы центр масс диска не смещался в сторону, т.е. перемещался вертикально. Амплитуда колебаний

Библиографический список
1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 4.3. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 16–17, 140–141.

Описание установки и метода измерения
  Большинство косвенных методов измерения ускорения свободного падения g основано на использовании формулы для периода гармонических колебаний физического маятника &nb

Порядок выполнения работы
  1. Опорную призму укрепить на конце стержня. Поместить маятник ребром опорной призмы на подставку и привести в колебательное движение так, чтобы амплитуда колебаний не превышала ~ 6

Библиографический список.
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 4.3, 27.1–27.2. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004

Краткая теория
  Под влиянием внешних сил всякое твердое тело деформируется, т.е. изменяет свою форму и размеры. Упругой называется деформация, исчезающая с прекращением действия силы. Так, упруго р

Продифференцировав дважды функцию (2) по времени, получим
  а = - w 2 Acos (wt + a) = - w 2x. (4)   После подстановки (4) в (3) находим   w =

Проверка закона Гука
  1. К нижнему концу пружины подвешивать разные грузы массы mi и по линейке отмечать вызванные ими удлинения хi. Измерения выполнить для пяти разли

Определение коэффициента упругости
  1. По графику зависимости mg = f(x) определить коэффициент упругости k, используя формулу k = Δ(mg)/Δx. 2. Вывести груз из положения равновес

Библиографический список
  1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 27.1–27.2. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – §

Теоретические сведения
Большинство косвенных методов измерения ускорения свободного падения g основано на использовании формулы для периода гармонических ко-   лебаний физического маятника

Описание установки и метода измерений
  В основании 1 (рис. 1) закреплена колонка 2, на ней зафиксирован верхний кронштейн 3 и нижний кронштейн 4 с фотоэлектрическим датчиком 5. Нижний кронштейн можно переме

Порядок выполнения работы
  1. Закрепить один груз вблизи конца, а другой - вблизи середины стержня. 2. Закрепить призмы так, чтобы они были обращены друг к другу. Одну из них поместить вблизи свободн

Библиографический список
  1.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 16, 140–142. 2. Савельев, И. В. Курс общей физики в 3-х т. Т.1 / И. В. Савельев.– СПб.: Лань, 2005

Описание установки
  Для возбуждения колебаний струны в работе используется метод резонанса. Струна приводится в движение силой, действующей на проводник с током в магнитном поле. Постоянное магнитное п

Порядок выполнения работы
  1. Подключить установку к сети 220 В. Нажать кнопку "СЕТЬ". 2. Дать электронному блоку в течение 1-2 минут войти в режим. 3. Установить натяжение струны

Библиографический список
1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 29.1, 29.5, 29.6. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 140, 141

Описание установки
Общий вид установки показан на рис. 2. На конце металлической трубы 1 жестко закреплен микрофон 2. Вдоль трубы при помощи стержня 3 мо- жет свободно перемещаться электродинамический громко

Порядок выполнения работы
  1. Подключить динамик к генератору электрических колебаний звуковой частоты, а микрофон - к осциллографу. Включить генератор и осциллограф в сеть. Частоту генератора задавать пример

Библиографический список
1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 29.1–29.3, 29.6. 2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 157.

Описание установки
На передней панели прибора (рис. 3) имеются три клавиши: 1 (сеть) - выключатель сети; 2 (пуск) - запуск счетчика колебаний и секундомера; 3 (стоп) - остановка счетчика колебаний и секундомера.

Порядок выполнения работы
  1. Включить установку в сеть и проверить работу регистрирующих систем: электронного секундомера и счетчика числа колебаний. 2. Задать начальную амплитуду A0

Библиографический список
  1.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 146. 2. Савельев, И. В. Курс общей физики в 3-х т. Т.1 / И. В. Савельев.– СПб.: Лань, 2005. – § 49

Краткие теоретические сведения.
  Теплоемкостью вещества называют количество тепла, которое необходимо сообщить телу, чтобы повысить его температуру на один кельвин. Теплоемкость единицы массы вещества назы

Описание установки и метода Клемана и Дезорма.
Установка состоит из стеклянного баллона Б, поршневого насоса Н, во

Библиографический список
1. Курс физики: Учебник для вузов: в 2-х т. Т. 2 / Под ред. В. Н. Лозовского. – СПб.: Лань, 2006. – Гл. 5.1 § 5.2–5.4 Гл. 5.2 § 5.17–5.19. 2. Савельев, И.В. Курс общей физики в 3-х т. Т.1

Библиографический список
1. Курс физики: Учебник для вузов: в 2-х т. Т. 1 / Под ред. В. Н. Лозовского. – СПб.: Лань, 2006. – Гл. 3.5 § 3.15, 3.18. Т.2 Гл. 5.1 § 5.2–5.4 Гл. 5.2 § 5.17–5.19 2. Детлаф, А. А. Курс фи

Краткие теоретические сведения
  Основное уравнение молекулярно-кинетической теории позволяет вычислить скорость теплового движения молекул газа; например, для молекул воздуха при комнатной температуре она равна 50

Описание установки.
  Установка для определения коэффициента вязкости воздуха состоит и

Порядок выполнения работы
  1. Взвесить сухой сосуд. 2. Открыть кран К сосуда А и следить за показаниями манометра, регулируя краном скорость вытекания воды, добиться такого режима его в

Библиографический список
1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 10.6–10.9. 2. Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 46, 48.

Порядок выполнения работы
Задание 1. Определить коэффициент динамической вязкости глицерина при комнатной температуре. 1. Измерить штангенциркулем диаметр шарика в различных местах. 2. Опу

Библиографический список
  1. Курс физики: Учебник для вузов: в 2-х т. Т. 1 / Под ред. В. Н. Лозовского. – СПб.: Лань, 2006. – Гл. 5.1 § 5.6–5.7. 2. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яв

Краткие теоретические сведения
Явление теплопроводности представляет собой процесс переноса тепла, обусловленный беспорядочным (тепловым) движением молекул. Это явление возникает всегда, когда есть разность температур между отде

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ ПО МЕТОДУ МАКСИМАЛЬНОГО ДАВЛЕНИЯ В ПУЗЫРЬКЕ
  Цель работы: измерить коэффициент поверхностного натяжения исследуемой жидкости при комнатной температуре. Оборудование: аспиратор,

Руководство по расчету случайной погрешности
  Случайная погрешность влияет на окончательный результат измерений, т. е. в равной степени завышает либо занижает его. Поэтому необходимо указать интервал [<x> - Δx, <x

Работа с калькулятором
  Переведем калькулятор в режим статистических расчетов. Введите данные результатов измерений: набрав число x1, нажмите клавишу

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги