рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гидроксиды металлов.

Гидроксиды металлов. - раздел Образование, ПОЛИМЕРНОЕ МАТЕРИАЛОВЕДЕНИЕ Гидроксиды Алюминия И Магния Занимают Первое Место Среди Антипиренов По Объём...

Гидроксиды алюминия и магния занимают первое место среди антипиренов по объёму применения (более 40% всего объёма антипиренов). Это обусловлено их низкой стоимостью по сравнению с системами на основе галогенов или фосфора. Неорганические гидроксиды легки в обращении и нетоксичны. Правильно подобранная система на основе гидроксида металла позволяет получить дешёвый негорючий материал с небольшим количеством дыма, выделяющегося при разложении.

Гидроксиды металлов под воздействием высоких температур разлагаются с выделением воды. Реакция разложения является эндотермической, что приводит к охлаждению субстрата до температур ниже точки воспламенения. Образование воды способствует разбавлению горючих газов, выделяющихся при разложении, ослабляет действие кислорода и уменьшает скорость горения. Эффективность гидроксидов прямо пропорциональна их содержанию в полимере.

Применение гидроксидов в качестве антипиренов постоянно возрастает, что обусловлено давлением экологических организаций, обеспокоенных влиянием галогенсодержащих соединений на окружающую среду.

Гидроксид алюминия (АТН) – применяется в эластомерах, реактопластах и термопластах. Разлагается при температурах 190 - 2300С в зависимости от размера частиц (0,25-3 мкм). Одна из основных областей применения – повышение огнестойкости бутадиен-стирольного латекса, используемого при производстве ковровых покрытий. Также он широко используется для изготовления негорючей эластомерной кабельной изоляции, ленточных транспортёров, кровельных материалов и шлангов. Возможно использование для повышения огнестойкости ненасыщенных полиэфиров, применяемых в различных областях.

Этот антипирен широко применяется в полиолефинах, ПВХ, термоэластопластах и т.д. Наибольшая эффективность наблюдается при использовании гидроксида алюминия в кислородсодержащих полимерах (ПЭТ, ПБТ, ПА) Основные направления модификации гидроксида алюминия направлены на повышение его теплостойкости. Этого можно достичь при реакции АТН со щавелевой кислотой, что даёт основной оксалат алюминия (ВАО) с термостабильностью до 3300С. Модификацию также производят реакцией с фосфорной кислотой или её эфиром, в результате чего получаются фосфинаты алюминия. Наибольшая эффективность фосфинатов алюминия была отмечена в кислородсодержащих полимерах (ПЭТ, ПБТ) и полиамидах. Но и у этих соединений есть недостатки – они неприменимы в полиолефинах и АБС, кроме того, они существенно дороже, чем гидроксиды.

Гидроксид магния (МН)– представляет собой белый порошок с размером частиц от 0,5 до 5 мкм. Так же как и гидроксид алюминия для достижения соответствующего огнезащитного эффекта вводится в количестве 50-70% от массы полимера. Гидроксид магния дороже, чем гидроксид алюминия, поэтому объём применения на порядок меньше. Но у него есть одно неоспоримое преимущество - он обладает более высокой теплостойкостью (до 3000С), поэтому может применяться при переработке конструкционных термопластов. В основном используется в полипропилене, АБС пластиках и полифениленоксиде. Не рекомендуется использовать этот антипирен в термопластичных полиэфирах (ПЭТ, ПБТ), так как он ускоряет деструкцию таких полимеров.

Триоксид сурьмы в сочетании с галоидпроизводными. Такое сочетание обусловлено синергетическим эффектом. Предполагается, что эффект обусловлен взаимодействием триоксида сурьмы с выделяющимся галоидводородом с образованием галоидоксидов и тригалоидных соединений сурьмы. Первые катализируют образование коксовой фазы, а вторые реагируют с кислородом воздуха с образованием тонкодисперстного оксида сурьмы и снижением температуры в зоне горения за счет тепловых потерь.

Основным недостатком гидроксидов металлов является высокая дозировка (50-70%). Она приводит к сильному росту вязкости при переработке в изделия и к снижению физико-механических свойств. Многочисленные исследования направлены на устранение этих недостатков.

 

– Конец работы –

Эта тема принадлежит разделу:

ПОЛИМЕРНОЕ МАТЕРИАЛОВЕДЕНИЕ

МЕТОДЫ ИССЛЕДОВАНИЯ ФИЗИКО МЕХАНИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ И ХИМИЧЕСКИХ СВОЙСТВ... Рис Определение условного предела пропорциональности по кривой...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гидроксиды металлов.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПОЛИМЕРНОЕ МАТЕРИАЛОВЕДЕНИЕ.
  Материаловедение – наука, изучающая взаимосвязь структуры и состававещества с его свойствами. Полимерное материаловедение выделяется в самостоятельный раздел об

ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
Общая классификация полимеров и полимерных композиций приведена на схеме 1. Пол

КОНСТРУКЦИОННОГО НАЗНАЧЕНИЯ
В основу классификации полимерных материалов конструкционного назначения положено их деление на наполненные и ненаполненные материалы. Причем все ненаполненные материалы могут служить матрицей напо

Модификация наполнителей
Возможная классификация взаимодействия полимер – наполнитель выглядит следующим образом: 1 – простая механическая смесь наполнителя с неполярным полимером. При этом происходит простое разб

ПЛАСТИФИКАЦИЯ
Вторым важным методом структурной модификации (помимо введения наполнителей) является пластификация – введение в полимер различных жидкостей или твердых тел, улучшающих пластичность и морозостойкос

ЭЛАСТИФИКАЦИЯ
Эластификация в отличиеот пластификации заключается в модифицировании стеклообразных термопластичных полимеров (первой группы) эластичными полимерами, образующими тонкодиспергированную эластичную ф

КРАСИТЕЛИ И ПИГМЕНТЫ ДЛЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
Красители¾это органические соединения, обладающие способностью интенсивно поглощать и преобразовывать энергию электромагнитных излучений (световую энергию) в видимой и ближних УФ и ИК - обла

СТАБИЛИЗАЦИЯ ПОЛИМЕРОВ
Увеличение срока эксплуатации полимерных материалов в различных отраслях народного хозяйства без существенного изменения их физико-химических свойств¾одна из главных задач, стоящих перед спе

МЕТОДЫ ИССЛЕДОВАНИЯ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ПЛАСТМАСС
Важнейшими вязкопластическими свойствами реактопластов являются вязкопластические свойства (текучесть) и скорость отверждения. Вязкопластические свойства характеризуются продолжительностью вязкопла

Метод Канавца
В настоящее время наиболее совершенным методом определения вязкопластических свойств и скорости отверждения реактопластов при различных условиях переработки является пластометрический метод Канавца

Плотность
Плотность полимерных материалов определяется обычно двумя способами. В случае, когда геометрическая форма изделия несложная (куб, шар, цилиндр и др.) рассчитывается ее объем путем измерения геометр

Прочностные характеристики
Определение прочностных показателей проводят путем снятия данных характеристик на специализированных машинах. Обычно определяют следующие характеристики: · предел прочности при сжатии s

Теплопроводность
Величина коэффициента теплопроводности полимерной композиции определяется в основном как самим полимером, так и наполнителем. Теплопроводность самого полимера очень мала (0,1¸0,2 Вт/

Температуропроводность
Величина, производная от теплопроводности, плотности и теплоемкости материала. Несмотря на то, что данная характеристика может быть рассчитана, обычно она определяется на приборе ИТ-a-400.

И температурных переходов в них
Теплостойкость. Этот показатель характеризует способность пластмасс сохранять свои механические свойства при непрерывном повышении температуры и выражается температурой, при которой под действием з

ОПТИЧЕСКИЕ И ЦВЕТОВЫЕ СВОЙСТВА ПЛАСТМАСС
Оптические свойства полимерных материалов в значительной степени зависят как от природы полимера, так и типа наполнителя. К оптическим характеристикам относят следующие: · коэффициент погл

Полиолефины.
Полимеры на основе непредельных алифатических углеводородов (пропилена, этилена, изобутилена) известны сравнительно давно. Однако широкому использованию в автомобильной отрасли мешают такие моменты

ТЭПы на основе полипропиленов.
Термоэластопласты на основе полипропилена выпускаются под маркой Армлен ® ПП ТЭП. Это сравнительно новый материал. Марки имеют твердость по Шор А от 60 до 90 единиц и отличаются сочетанием высокой

Торговые марки Армлен® ПП ТЭП
Цвет Стандартный цвет – натуральный. Окрашивается в разные цвета с использованием концентратов красителей без значительного изменения физико-механических свойств.

ТЭПы на основе полиэфиров
Торговая марка Хайтрел® Отличный выбор для эластичных изделий - конструкционный термоэластопласт, сочетающий лучшие характеристики эластомеров и гибки

Устойчивость к органическим растворителям.
При комнатной температуре ПЭ нерастрорим ни в органичеиких ни в минеральных растворителях, но способен набухать при длительном контакте с ароматическими, алифатическими и хлорированными углеводород

Механические свойства
Прочностные характеристики ПЭ возрастают с увеличением криста­ллической фазы в полимере и с ростом его М.М. Диаграмма испытания образцов ПЭ на растяжение имеет характерную форму представле

ТЕМЫ КУРСОВЫХ РАБОТ ПО ПОЛИМЕРНОМУ
МАТЕРИАЛОВЕДЕНИЮ   1. Заливочные полиуретановые композиции и их применение в промышленности. 2. Термостойкие клеевые материалы на основе эпоксидных смол для радиотех

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги