рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение твердости по Бринеллю

Определение твердости по Бринеллю - раздел Образование, МАТЕРИАЛОВЕДЕНИЕ Определение Твердости По Бринеллю (Гост 9012-59, 22761-77) Состоит В Том, Что...

Определение твердости по Бринеллю (ГОСТ 9012-59, 22761-77) состоит в том, что при использовании специального пресса (пресса Бринелля) в испытуемый материал в течение определенного времени вдавливается нагрузкой Р стальной закаленный шарик диаметра D.

Схема испытания на твердость по Бринеллю дана на рис. 1.

В результате вдавливания шарика на поверхности образца получается отпечаток (лунка).

Диаметр отпечатка измеряют специальным отсчетным микроскопом МПБ-2, на окуляре которого нанесена шкала с делениями, соответствующими десятым долям миллиметра (рис. 2).

Отношение давления Р к поверхности полученного отпечатка (шарового сегмента) дает число твердости обозначаемое НВ:

 

, кгс/мм2 (н/м2),

где F=pDh.

 

 

Рис. 1. Схема определения твердости методом Бринелля

 

Рис. 2. Измерение диаметра отпечатка

 

Так как удобнее измерять не глубину отпечатка, а его диаметр, то, выражая глубину отпечатка через его диаметр d и диаметр шарика, получаем:

 

.

 

Подставив значение F получим:

 

, кгс/мм2 (н/м2).

 

Таким образом, зная диаметр шарика и нагрузку, замерив диаметр отпечатка, легко определить твердость.

Для получения одинаковых значений твердости металла при разных диаметрах шариков и различных нагрузках необходимо соблюдать закон подобия P/D2 = const. В этом случае угол j = const, где j – угол вдавливания. Поэтому при испытании по Бринеллю, учитывая закон подобия, а также то обстоятельство, что диаметр шарика подбирается в зависимости от толщины испытуемого образца металла, и что для металлов разных твердостей нужно прилагать разные нагрузки, применяют соотношения по ГОСТ 9012-59. Кроме того, продолжительность выдержки образца под нагрузкой должна быть строго определенной, чтобы деформация образца шариком полностью завершилась.

Перед испытанием поверхность образца, в которую будет вдавливаться шарик, обрабатывают наждачным камнем или напильником, чтобы она была ровной, гладкой и не было окалины и других дефектов. При обработке поверхности образец не должен нагреваться выше 100–150°С. Подготовка поверхности образца необходима для получения правильного отпечатка и отчетливой видимости его краев для измерения.

При выборе диаметра шарика D, нагрузки P, продолжительности выдержки под нагрузкой и минимальной толщины испытуемого образца следует руководствоваться нормами ГОСТа для испытаний по Бринеллю (табл. 1).

 

Таблица 1

Соотношение диаметров шарика и нагрузки при испытании металлов по методу Бринелля

 

Материал Число твердости Толщина образца, мм Диаметр шарика, мм Нагрузка, кгс Выдержка под нагрузкой, с
Черные металлы 140–450 Более 6 От 6 до 3 Менее 3 2,5 187,5

Окончание табл. 1

Черные металлы До 140 Более 6 От 6 до 3 Менее 3 2,5 187,5
Цветные металлы и сплавы (медь, латунь, бронза, магниевые сплавы и др.) 31,8–130 Более 6 От 6 до 3 Менее 3 2,5 62,5
Цветные металлы и сплавы (алюминий, подшипниковые сплавы и др.) 3–35 Более 6 От 6 до 3 Менее 3 2,5 62,5 15,6

 

При указании твердости НВ иногда отмечают, при каких условиях измерялась твердость, например: НВ 140 (10/3000/10) означает, что испытание производилось шариком диаметром 10 мм под нагрузкой 3000 кгс (30000 Н) в течение 10 секунд.

При измерении твердости шариком определенного диаметра и с установленными нагрузками расчет числа твердости по формуле НВ=Р/F почти не выполняют, а пользуются заранее составленными таблицами, указывающими число НВ, в зависимости от диаметра отпечатка d и соотношения между нагрузкой Р и D2 (согласно табл. 2).

 

Таблица 2

Твердость по Бринеллю

 

Диаметр отпечатка, мм d10, или 2d5, или 4d2,5 Число твердости при нагрузке Р, кгс     Диаметр отпечатка, мм d10, или 2d5, или 4d2,5 Число твердости при нагрузке Р, кгс
30D2 10D2 2,5D2 30D2 10D2 2,5D2
2,0 78,8 3,6 23,7
2,1 71,4 3,7 22,4
2,2 65,0 3,8 21,2
2,3 59,4 3,9 20,0
2,4 54,4 4,0 19,1

Окончание табл. 2

2,5 50,2 4,1 18,0
2,6 46,3 4,2 17,2
2,7 42,9 4,3 16,4
2,8 39,8 4,4 15,5
2,9 37,9 4,5 14,9
3,0 34,6 4,6 14,2
3,1 32,3 4,7 13,6
3,2 30,3 4,8 13,0
3,3 28,5 4,9 12,4
3,4 26,7 5,0 12,4
3,5 25,2 5,1 11,4

 

Существует примерная количественная зависимость между числами твердости и пределом прочности:

для стали с твердостью НВ 120–175...…………………sв=0,34 НВ;

для стали с твердостью НВ 175–450..………………….sв=0,35 НВ;

для меди, латуни и бронзы отожженной..……………..sв=0,55 НВ;

для меди, латуни и бронзы наклепанной..……….…….sв=0,40 НВ;

для алюминия и алюминиевых сплавов

с твердостью НВ 20–45...........................................sв=(0,33÷0,36) НВ;

для дуралюминия отожженного...………………………sв=0,36 НВ;

для дуралюминия после закалки и старения………..…sв=0,35 НВ.

Измерение твердости вдавливанием стального шарика не является универсальным способом. Этот способ не позволяет: а) испытывать материал с твердостью более НВ 450; б) измерять твердость тонкого поверхностного слоя (толщиной менее 1–2 мм), так как стальной шарик продавливает этот слой.

 

– Конец работы –

Эта тема принадлежит разделу:

МАТЕРИАЛОВЕДЕНИЕ

Белгородский государственный технологический университет... им В Г Шухова...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение твердости по Бринеллю

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Стативко А.А., Шопина Е.В., Кунин А.С.
С 78 Материаловедение: Учеб. пособие / А.А. Стативко, Е.В. Шопина, А.С. Кунин. – Белгород: Изд-во БГТУ им. В.Г. Шухова, 2010. – 72 с.  

Краткие сведения из теории
Определение твердости является широко распространенным способом испытаний для характеристики механических свойств металлов. В настоящее время существует несколько методов измерения твердости, разли

Практика определения твердости по Бринеллю
  1. Пользуясь табл. 1 для заданного образца определить диаметр шарика, величину нагрузки Р и время выдержки образца под нагрузкой. 2. Закрепить шарик в держателе 15 (

Определение твердости по Роквеллу
  Определение твердости на приборах типа ТК осуществляется вдавливанием алмазного конуса или стального шарика (метод Роквелла) с определением твердости по глубине получаемого отпечатк

Практика определения твердости по Роквеллу
1. Пользуясь табл. 3 для заданного образца выбрать нужную шкалу твердости и установить соответственно сменный груз 11 (рис. 5). 2. Установить в шпиндель 8 выбранный наконечник и закрепить

Пластическая деформация и рекристаллизация
Холодная пластическая деформация вызывает в металле структурные изменения, а, следовательно, и изменение свойств металла. Явления, возникающие в металле при пластической деформации, многоо

Порядок выполнения работы
  В данной работе студенты знакомятся с изменением формы, размеров зерен и твердости металла, подвергнутого холодной пластической деформации и рекристаллизационному отжигу. П

Компоненты и фазы в системе железо – углерод
  Железо – металл сероватого цвета. Атомный номер 26, атомная масса 55,85, атомный радиус 0,127 нм. Температура плавления железа 1539°С. Железо имеет две полиморфные модификации α

Диаграммы состояния железо-углеродистых сплавов
  Существует две диаграммы железоуглеродистых сплавов: железо-цементит и железо-графит. Эта двойственность обусловлена тем, что в зависимости от внешних условий в равновесии с жидким

Кристаллизация сплавов Fe-Fe3C
Линии диаграмм состояния Fe-Fe3C, определяющие процесс кристаллизации, имеют следующие обозначения и физический смысл: АВ – линия ликвидус, показывает температуру начала кристалли

Равновесном состоянии
Цель работы:изучение микроструктуры углеродистых сталей в равновесном состоянии, определение марки сталей, установление связи между структурой стали, диаграммой состояния Fe-Fe3C

Порядок выполнения работы
  1. Начертить область диаграммы состояния системы Fe-Fe3C, соответствующую сталям. 2. На диаграмме состояния Fe-Fe3C провести вертикальные линии, соотв

Изучение структуры и свойств чугунов
  Цель работы: изучение микроструктуры чугунов разных марок, установление зависимости между структурой и механическими свойствами чугунов. Оборудование и материалы:

Белые чугуны
Белым называется чугун, в котором весь углерод находится в химически связанном состоянии в виде цементита Fe3C, который придает излому чугуна белый блестящий цвет. Фазовые превр

Серые чугуны
Серым называется чугун, в котором углерод находится в виде графита, имеющего форму слегка изогнутых пластин или чешуек, или разветвленных розеток с пластинчатыми лепестками. Вследствие большого кол

Высокопрочные чугуны
  Высокопрочный чугун получают при модифицировании (микролегировании жидкого чугуна магнием (0,1...0,5%) или церием (0,2...0,3%). При этом под действием магния графит в процессе крист

Легированные чугуны
Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-82. Марки легированных чугунов и и

Термическая обработка углеродистых сталей
  Цель работы:обоснование выбора параметров и практическое проведение основных видов термической обработки сталей: отжига, нормализации, закалки и отпуска; овл

Влияние скорости охлаждения на структуру и свойства стали
Этот вопрос удобнее выяснить на примере эвтектоидной стали (С = 0,8%). Из этой стали изготавливается серия образцов, все они нагреты до аустенитного состояния, т.е. выше 727°С и в дальнейшем каждый

Перлитное превращение
В интервале температур перлитного превращения образуются пластинчатые структуры из кристаллов феррита и цементита, которые отличаются степенью дисперсности частиц Ф и Ц. Дисперсность перли

Промежуточное (бейнитное) превращение
В результате промежуточного превращения образуется бейнит, представляющий собой структуру, состоящую из a-твердого раствора несколько пересыщенного углеродом и частиц цементита. Бе

Мартенситное превращение аустенита
  Мартенсит – это пересыщенный твердый раствор внедрения углерода в Feα Мартенсит образуется только из аустенита в ре

Виды термической обработки
  Термической обработкой называется такая технологическая операция, при которой путем нагрева сплава до определенной температуры, выдержке при этой температуре и посл

Отжиг стали
Цель отжига: 1) исправление структуры после горячей обработки (ковки, литья); 2) снижение твердости для облегчения обработки резанием; 3) снятие внутренних напряжений;

Нормализация стали
Нормализациейстали называется вид термической обработки, состоящий в нагреве стали на 30–50°С выше линии GSE(Аcз и Аcm), выдержке при это

Закалка стали
Закалкойназывается вид термической обработки, состоящий в нагреве стали до температуры выше линии АС3 (доэвтектоидной стали) или АС1 (заэвтектои

Отпуск стали
Отпускомназывается вид термической обработки, состоящий из нагрева закаленной на мартенсит стали до температуры ниже линии PSK (АС1), выдержке при этой тем

Порядок выполнения работы
Работа выполняется бригадным методом. Каждый студент бригады получает задание на проведение одного из видов термической обработки. Пользуясь диаграммой состояния Fe-Fe3C и справочной лит

Контрольные тесты
  Общая характеристика материалов Атомно-кристаллическое строение металлов Пластическая деформация металлов   1. Какое св

Ответы на тест
  1 – г 2 – в 3 – в 4 – б 5 – в 6 – в 7 – г 8 – а 9 – в 10 – г 11 – а 12 – б

Библиографический список
  1. Материаловедение: учебник для ВУЗов/ Б.Н. Арзамасов, В.И. Макарова, Г.К. Мухин и др., под общ. ред. Б.Н. Арзамасова – 3-е изд., перераб. и доп. – М.: Изд-во МГТУ им. Н.Э. Баумана

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги