Материалы буферного и защитных покрытий оптических волокон

 

Первичное защитное покрытие (ПЗП) наносится на поверхность ПОВ при его непосредственном изготовлении в едином технологическом процессе. Оно предназначено защищать ОВ от механических повреждений, влаги и других внешних факторов.

Существует несколько важных требований к полимеру, используемому для первичного покрытия. Он должен быть стоек при воздействии рабочих температур; реагенты должны быть жидкими при комнатной температуре и иметь достаточно низкую вязкость для наложения на световод в виде пленки толщиной 10-50 мкм концентричным слоем, постоянным по толщине. Реагирующие компоненты материала должны полностью превращаться в твердый полимер (свободный от растворителя или продуктов реакции) с гладкой поверхностью. Время полимеризации должно быть соотнесено со скоростью вытяжки ОВ. Показатель преломления полимера должен быть не менее 1,43. ПЗП должен иметь хорошую адгезию к материалу оптической оболочки световода и быть эластичным.

Первое защитное покрытие, как и другие виды покрытий, при его наложении на световод не должно вызывать остаточных напряжений по всей его длине или в локальных точках. Полимерное покрытие должно легко сниматься с поверхности волокна. При выборе материала необходимо учитывать ТКЛР, который должен приближаться к ТКЛР материала световода.

Большей частью в качестве материала световода ПЗП используются лаки. По способу полимеризации они делятся на материалы теплового и ультрафиолетового (УФ) отверждения. К первым из них можно отнести силиконовые компаунды, превращающиеся в мягкую, прозрачную, каучукоподобную композицию (силиконизированное волокно).

Материалы ПЗП УФ-отверждения включают в себя кремнийорганические компаунды эпоксиакрилаты, уританокрилаты. Они обладают существенным преимуществом по сравнению с материалами теплового отверждения, заключающимся в высокой скорости полимеризации, а также лучшую однородность покрытия, так как отверждение происходит практически мгновенно и при низкой температуре. В качестве ПЗП могут выступать металлы и неорганические соединения.

Металлы наносят на поверхность оптических волокон в процессе его вытяжки. Используются следующие металлы: олово, индий, свинец и алюминий. Неорганические ПЗП выполняются из SiN4, SiC, TiC, TiO2. Разработана технология покрытия световодов оболочкой из углерода.

При изготовлении ОВ с многослойным защитным полимерным покрытием в некоторых случаях между основными слоями наносят дополнительный промежуточный, получивший название буферного. Материал буферного слоя должен иметь высокое значение модуля Юнга и играть роль демпфера, уменьшающего воздействие защитных оболочек на ОВ. Буферный слой выполняется из мягкого полимерного материала, например из кремнийорганических или уретанакрилатных композиций.

Полипропилен

 

Полипропилен (полипропен) - PP (выпускается под торговыми марками: бален, липол, новолен, олеформ, пропатен, каплен, HOSTALEN, MOPLEN). Крупнотоннажное производство полипропилена налажено как в России, так и во многих зарубежных странах. Производители полипропилена - практически все крупные нефтехимические компании мира.

Получение полипропилена. Сырьем для полипропилена служит газ пропилен (пропен). В промышленности получают полимеризацией пропилена главным образом в массе а также в растворе. Реакцию в массе осуществляют при 70-800С и давлении 2,7-3,0 МПа. Благодаря отсутствию растворителя упрощается выделение и сушка полипропилена. Полимеризацию в растворе (растворитель – гептан, низкооктановые фракции бензина; t=70-800С, p=0,5-0,1 МПа, катализаторы - хлориды титана TiCl3 с алюминийорганическими соединениями Al(C2H5)2Cl) проводят до содержания полипропилена в растворителе 300-400 г/л. После отделения на центрифуге полипропилен отмывают от остатков катализатора спиртом, смесью воды со спиртом. Порошкообразный полипропилен сушат, смешивают со стабилизаторами, красителями и затем гранулируют. Как правило, полипропилен выпускают в виде гранул диаметром 2- 5 миллиметров (намного реже порошка). ПП относится к классу полиолефинов. Существует несколько подклассов полипропилена.

Свойства полипропилена: ММ = (60-300)*103; показатель текучести расплава ( 2300С/2,16кг, г/10 мин) 0,2-55; легко кристаллизуется (максимальная степень кристалличности 75%); температура стеклования (температура размягчения) от -10 до -20 град.С; температура плавления 160-176 град. С; термическая деструкция начинается при 300 град.С; плотность 0,90-0,92 г/см3; усадка (при изготовлении изделий) 1,3-2,4%.

Химические свойства: устойчив в воде (вплоть до 1300С) и агрессивных средах (устойчив к кислотам и щелочам, отдельные марки допущены к контакту с пищевыми продуктами и для производства изделий медико-биологического назначения); кроме сильных окислителей (HNO3, H2SO4, хромовая смесь).

Физические свойства: полипропилен-гомополимер хрупкий при низких температурах; полипропилен-сополимер с этиленом очень эластичный; полипропилен плохо проводит тепло – теплопроводность 0,15 Вт/(м*К); в тонких пленках практически прозрачен; теплостойкость по Вика 95-1100С; морозостойкость от -5 до -250С; для полипропилена характерны высокая ударная вязкость; стойкость к многократным изгибам; хорошая износостойкость, повышающаяся с ростом молекулярной массы.

Эксплуатационные свойства: полипропилен легко окисляется на воздухе, особенно при температуре выше 1000С; термоокислительная деструкция протекает автокаталитически (самостоятельно), максимальная температура эксплуатации изделий из полипропилена 120-1400С; полипропилен легко подвергается хлорированию.

 

Основные группы марок полипропилена и сополимеров пропилена, выпускаемые на сегодняшний день:

PP homopolymer, PP HO, PPHP, PPH - Полипропилен (гомополимер), изотактический полипропилен

HIPP - Высокоизотактический полипропилен (гомополимер)

APP - Атактический полипропилен

Синдиотактический полипропилен

mPP - Металлоценовый полипропилен

PP block-copolymer, PP impact copolymer, PP CO, PPCP - Блок-сополимер пропилена и этилена

PPH - Блок-сополимер с очень высоким содержанием полиэтилена

PPМ - Блок-сополимер с низким содержанием полиэтилена

PPR - Блок-сополимер со средним содержанием полиэтилена

PPU - Блок-сополимер с высоким содержанием полиэтилена

PP random copolymer - Статистический сополимер пропилена и этилена

EPP - Вспенивающийся полипропилен

PP-X, PP-XMOD - Сшитый полипропилен


Термопластичные эластомеры на основе полипропилена (TPE)

TPO, PP +EPDM, PP/EPDM, TPE-O, TEO, CTPO, c-TPO, compounded TPO - Смесевые термопластичные полиолефиновые эластомеры (смеси полипропилена с каучуками)
TPV, TPR, TPE-V - Вулканизированные термопластичные эластомеры (на основе полипропилена). К TPO обычно относят смеси PP с каучуком, содержащие более 20% каучука.

R-TPO, r-TPO, RTPO, RxTPO, reactor TPO, in-reactor TPO, reactor-made TPO - "Реакторные" термопластичные полиолефиновые эластомеры (сополимер этилена с пропиленом)

Основные направления применения полипропилена

Полипропилен - один из наиболее широко использующихся пластиков. Технология переработки полипропилена сравнительно проста, для этого подходят все основные способы переработки пластмасс. Для переработки полипропилена не требуется применения узкоспециализированного оборудования. Современной промышленностью выпускаются специальные марки красителей и концентратов пигментов для окрашивания изделий из полипропилена (кроме того подходят также и универсальные концентраты пигментов, разработанные на основе низкомолекулярного полиэтилена других типов полиолефинов). Первичный полипропилен обладает неплохими оптическими свойствами, что используется при получении прозрачных изделий.

При использовании экструзии получают полипропиленовые трубы для холодного и горячего водоснабжения (рандом сополимер), канализации; сотовый полипропилен, листовой полипропилен, профили, волокна, вспененные изделия, а также самые разнообразные полипропиленовые пленки для нужд всех отраслей промышленности. Применяя литье под давлением и термо-вакуумное формование для изготовления изделий, получают разнообразные упаковочные материалы из полипропилена, а также одноразовую посуду. Упаковка из полипропилена - бурно развивающийся сегмент сегодняшнего рынка пластиковых изделий. Кроме того, достаточно крупными потребителями гранулированного полипропилена в России являются компании, призводящии товары бытового назначения, канцтовары, игрушки. Некоторые марки полипропилена перерабатывается также экструзионно-выдувным и ротационным способами для получения разного рода емкостей, сосудов и тары.

ПП не является конструкционным материалом, но армированный полипропилен используется в изделиях конструкционного назначения. Широко распространена также сварка изделий из полипропилена, который может свариваться всеми основными способами: контактная, горячим газом, присадочным прутком, трением и т.д.

Отдельный сегмент современного рынка - рециклинг полипропилена. Многие компании в России и мире специализируются на покупке полипропиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полипропилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий.

Полистирол

 

Полистирол - линейный полимер стирола, [-CH2-CH (C6H5)-] n; прозрачное стеклообразное вещество, молекулярная масса 30-500 тыс., плотность 1,06 г/см3 (20 °С), температура стеклования 93 °С.

Полистирол - дешёвый крупнотоннажный термопласт; характеризуется высокой твёрдостью, хорошими диэлектрическими свойствами, влагостойкостью, легко окрашивается и формуется, химически стоек, растворяется в ароматически и хлорированных алифатических углеводородах, физиологически безвреден. Однако для полистирола характерны сравнительно низкая теплостойкость (например, по Вика ~ 100 °C ) и значительная хрупкость. Лучшими эксплуатационными свойствами обладают различные сополимеры стирола. Так, повышения теплостойкости и прочности при растяжении (на ~ 60%) достигают сополимеризацией стирола с акрилонитрилом или a-метилстиролом, повышения прочности и ударной вязкости (с 5-10 до 50- 100 кдж/м2, или кгс?см/см2)- получением привитых сополимеров стирола с 5-10% каучука, например бутадиенового (ударопрочный полистирол), а также тройных сополимеров акрилонитрила, бутадиена и стирола (т. н. АБС-пластик). Заменой акрилонитрила на метилметакрилат синтезируют прозрачные тройные сополимеры.

В промышленности полистирол и сополимеры стирола получают радикальной полимеризацией в массе и водных эмульсиях; перерабатывают литьём под давлением, экструзией, прессованием, вакуум-формованием. Полистирол. используют для изготовления предметов бытовой техники и домашнего обихода, упаковки, игрушек, фурнитуры, плёнки, для получения пенополистирола (см. Пенопласты). Из ударопрочного полистирола и АБС-пластика изготавливают, кроме того, корпуса радио- и телеаппаратуры, детали автомобилей, холодильников, мебель, трубы и др. Применяют также смеси полистирола с каучуками и др. пластмассами.

Мировое производство П. и сополимеров стирола в 1973 составило около 5 млн. т.

В практике современного строительства одной из важнейших задач на сегодняшний день является обеспечение качественной теплозащиты зданий, надежной и обеспечивающей энерго - и ресурсосбережение.

В условиях выполнения поставленных задач основным стал вопрос о возможности получения новых высококачественных теплоизоляционных материалов для ограждающих конструкций, отвечающих требованию современных стандартов ( в частности, требованиям СНиП II-3-2000 "Строительная теплотехника" ), с целью применения их при строительстве зданий и сооружений.

Новый материал должен иметь следующие преимущества: быть простым в получении, производиться из доступных материалов, обладать улучшенными физико-механическими показателями и быть конкурентоспособным среди широкого ассортимента продукции мирового строительного рынка.

Современный этап развития науки о строительных материалах позволяет на практике воплотить в жизнь и усовершенствовать теорию о совместной работе бетонов и легких теплоизоляционных полимеров, объединенных в единое целое.

Целью такого объединения является получение универсального "гибрида", обладающего всеми положительными свойствами исходных компонентов - цементного камня (как представителя бетонного начала) и пенополистирола - одного из современных теплоизоляционных материалов.

В течение многих лет приводились исследования по получению подобного материала, и выход был найден!

Решением данного "уравнения" стало сравнительно недавнее (около 10 лет назад) появление на рынке строительных материалов полистиролбетона.

Новый высококачественный композит в мире строительной индустрии - полистиролбетон - по праву стремится к первенству среди прочих теплоизоляционных и конструкционно-теплоизоляционных материалов.

За относительно небольшой период полистиролбетон приобрел широкомасштабную известность в сфере строительства как перспективный строительный материал будущего.

Учитывая повышенный интерес производителей к увеличению спроса на данный материал, а потребителей - к повышению его качества, происходит постоянное усовершенст

Полистиролбетон