Композиционные материалы с одномерными наполнителями

 

В композиционных материалах этого типа упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон (проволоки). Волокна и другие армирующие элементы скрепляются матрицей в единый монолит. Матрица защищает упрочняющие волокна от повреждений, служит средой, передающей нагрузку на волокна, и перераспределяет напряжения в случае разрыва отдельных волокон. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице.

На свойства волокнистой композиции помимо высокой прочности армирующих волокон и жесткости пластичной матрицы оказывает влияние прочность связи на границе матрица — волокно.

Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

Прочность композиции складывается из суммарной прочности волокон и матрицы. Прочность композиции растет до значений объемной доли волокна Vв 0,8 - 0,9, поскольку при больших значениях Vв сложно заполнить пространство между волокнами материалом матрицы, ухудшается сцепление волокна с матрицей и между ними возможно проскальзывание. Кроме того, в этом случае волокна близко расположены друг к другу, что не затрудняет распространение трещин от волокна к волокну.

Волокнистые композиции — ярко выраженный анизотропный материал, механические свойства которого самым существенным образом зависят от угла ориентации волокон относительно действующей нагрузки. Устраняется этот недостаток только выбором материала для детали с пространственным армированием волокнами, сетками или конструи-рованием детали из композиционного материала таким образом, чтобы нагрузки действовали вдоль упрочняющего волокна.

Для упрочения композиционных материалов используют высокопрочную проволоку из стали, молибдена, вольфрама и других металлов и их сплавов; волокна из бора, углерода, стекла, а также монокристаллы из оксидов, нитридов алюминия и кремния и других соединений.

Выбор метода получения композиции из различных сочетаний матрицы и армирующего волокна определяется следующими факторами:

•размерами, профилем и природой исходных материалов матрицы и упрочнителя;

•возможностью создания прочной связи на границе раздела матрица — упрочнитель;

•получением равномерного распределения волокон в матрице;

•возможностью совмещения процессов получения композиционного материала и изготовления из него деталей;

•экономичностью процесса.

При производстве композиционных материалов с металлической матрицей наибольшее распространение получили твердофазные, жидкофазные, газопарофазные, химические и электрохимические процессы.

Твердофазный метод совмещения компонентов композиции предполагает использование материала матрицы в виде листов, фольги, проволоки или порошка. Композиционный материал получают одним из следующих приемов: диффузионной сваркой под давлением; сваркой взрывом; деформационной обработкой под давлением; прессованием с последующим спеканием (порошковой металлургией).

Жидкофазные процессы получения композиционных материалов заключаются в пропитке упрочняющих волокон или нитевидных кристаллов, расположенных в определенной последовательности или беспорядочно, расплавом материала матрицы.

Методы получения композиционного материала различаются между собой условиями пропитки волокон расплавом, проходящей:

•при нормальном давлении;

•в условиях вакуума (вакуумное всасывание);

•под давлением;

•в сочетании элементов вакуумной пропитки и литья под давлением.

Газопарофазными способами наносят на армирующие волокна барьерные или технологические покрытия, обеспечивающие их защиту от разрушения при взаимодействии его с материалом матрицы. Их фазовый состав (чаще всего нитриды, бориды, оксиды, карбиды) выбирают исходя из физико-химической и термомеханической совместимости армирующих волокон и материала матрицы. Покрытия получают в результате либо разложения летучих карбонильных соединений металлов, либо испарения металлов и сплавов при термическом воздействии электронным лучом, ионными пучками. Низкая производительность методов не позволяет использовать их для прямого компактирования композиционных материалов.

Для этих целей используют метод газотермического плазменного напыления, обеспечивающий получение полуфабрикатов композиционных материалов. Плазменным напылением наносят покрытия из матричного материала на армирующие волокна без существенного повышения их температуры. Прочность сцепления покрытия с основой определяется механическим сцеплением частиц напыляемого металла или сплава с шероховатой поверхностью, силами адгезии и химическим взаимодействием. Прочность связи плазменных покрытий значительно ниже, чем покрытий, получаемых металлизацией, испарением или конденсацией в вакууме.

Электролитические методы позволяют получать композиционные материалы в результате осаждения матричного материала на нитевидные кристаллы и волокна, которые непрерывно находятся в контакте с катодом. Процесс протекает при низкой температуре и в отсутствие давления, что практически полностью исключает разрушение волокон и вредное влияние температурного фактора. Покрытие получается плотным, беспористым в том случае, если оно равномерно покрывает поверхность волокон и пространство между ними. Пористость наблюдается при использовании волокон бора, карбида бора или металлических волокон диаметром более 100 мкм.

Химические методы позволяют осаждать металлические покрытия на не проводящие ток упрочнители в виде нитевидных кристаллов (сапфир), а также на углеродные волокна (ленты, пряди). Металлическая пленка точно воспроизводит профиль волокна, и ее толщина легко контролируется параметрами технологического процесса. Сущность химического метода осаждения покрытий заключается в восстановлении ионов металлов на поверхности покрываемого вещества.

Методом химического осаждения получают покрытия толщиной до 30 мкм и более. Наиболее широко используют осаждения на упрочнители никеля, в меньшей степени меди, хрома, кобальта.