КОНЦЕПЦИЯ ЭКОСИСТЕМЫ

Первые организмы на Земле были гетеротрофами. Они быстро исчерпали бы себя, если бы не появились автотрофы. При наличии этих групп организмов уже воз­можен примитивный круговорот веществ:

Автотрофы синтезируют органические вещества, а гетеротрофы их потребляют. При этом происходит рас­щепление органических веществ. Если продукты расщеп­ления вновь используются автотрофами, возникает кру­говорот между организмами, населяющими экосистему. Биотическую и абиотическую части экосистемы связы­вает непрерывный обмен материалом — круговороты пи­тательных веществ, энергию для которых поставляет Солнце (рис. 8.1).

Растения синтезируют органические соединения, используя энергию солнечного света и питательные вещества из почвы и воды. Эти соединения служат растениям строительным мате­риалом, из которого они образуют свои ткани, и источником энергии, необходимой им для поддержания своих функций. Для высвобождения запасенной ими химической энергии гетерот­рофы разлагают органические соединения на исходные неор-

 

 

 

Рис 8.1. Поток энергии и круговорот химических веществ в экосистеме (по Риклефсу, 1979).

ганические компоненты - диоксид углерода, воду, нитраты, фосфаты и т. п., завершая тем самым круговорот питательных веществ.

Сказанное выше позволяет нам определить экосис­тему так: экологическая система представляет собой лю­бое непрерывно меняющееся единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создает определенную трофическую структуру, видовое разнообразие и круговорот веществ внутри системы. Другая формулировка звучит следующим образом: эко­система - исторически сложившаяся система совмест­ного использования совокупностью живых организмов определенного пространства обитания в целях питания, роста и размножения.

Экосистема есть основная функциональная единица живой природы, включающая и организмы, и абиотичес­кую среду, причем каждая из частей влияет на другую и обе необходимы для поддержания жизни в том виде, в каком она существует на Земле. Двуединый характер этого комплекса подчеркнул В.Н. Сукачев в учении о биогеоценозе. Идеи, развиваемые Сукачевым, нашли графическое выражение на рис. 8.2.

 

Рис. 8.2. Структура-биогеоценоза по Сукачеву (1964).

Принимая двуединый характер биогеоценоза (экотоп + био­ценоз), следует подчеркнуть, что неправомерно рассматривать биоценоз как сумму фитоценоза, зооценоза и микробоценоза, реально не существующих в природе в качестве отдельных и самостоятельных групп растений, животных и микроорганизмов. В современной экологической литературе экотоп часто обозна­чают как косную часть экосистемы, а биоценоз - как ее живую часть (рис. 8.3).

Рис. 8.З. Основные экологические компоненты биогеоценоза (из Реймерса, 1988).

В первом приближении биотическая часть экосисте­мы обязательно включает два основных компонента:

1) автотрофный компонент, для которого характерны фиксация световой энергии, использование простых не­органических веществ, построение сложных веществ;

2) гетеротрофный компонент, которому присущи утили­зация, перестройка и разложение сложных органических веществ. Очень часто организмы, представляющие со­бой эти два компонента, разделены в пространстве; они располагаются в виде ярусов, один над другим. Авто­трофный метаболизм наиболее интенсивно происходит в верхнем ярусе — «зеленом поясе», т. е. там, где наи­более доступна световая энергия, а гетеротрофный ме­таболизм преобладает внизу, в почвах и отложениях — «коричневом поясе», в котором накапливается органи­ческое вещество.

Функционирование автотрофов и гетеротрофов раз­делено также во времени: использование продукции ав-тотрофных организмов гетеротрофными может происхо­дить не сразу, а с существенной задержкой. Например, в лесной экосистеме фотосинтез превалирует в листо­вом пологе. Лишь часть продуктов, причем весьма не­большая, немедленно и непосредственно перерабаты­вается гетеротрофами, питающимися листвой и моло­дой древесиной. Основная масса синтезированного вещества (в форме листьев, древесины и запасных пи­тательных веществ в семенах, корнях) в конце концов, попадает в подстилку и почву, где и происходит утили­зация органического вещества.

С точки зрения их роли в экосистемах переходную груп­пу между автотрофами и гетеротрофами образуют хемосин-тезирующие бактерии. Они получают энергию, необходимую для включения углекислого газа в состав компонентов клет­ки, не путем фотосинтеза, а в результате химического окис­ления таких простых неорганических соединений, как аммо­ний (окисляется в нитрит), нитрит (в нитрат), сульфид (в серу), закись железа (в оксид железа). Часть бактерий мо­жет развиваться в темноте, но большинство нуждается в кис­лороде.

Во втором приближении во всякой экосистеме мож­но выделить следующие компоненты: 1) неорганические вещества (углерод, азот, углекислый газ, вода и т. д.), вступающие в круговороты; 2) органические соединения (белки, углеводы, липиды, гуминовые вещества и т. д.), связывающие биотическую и абиотическую части; 3) кли­матический режим (температура и другие физические факторы); 4) продуценты — автотрофные организмы, глав­ным образом зеленые растения, которые способны со­здавать пищу из простых неорганических веществ; 5) консументы — гетеротрофные организмы, главным об­разом животные, которые поедают другие организмы или частицы органического вещества; 6) редуценты (дест­рукторы, декомпозиторы) — гетеротрофные организмы, преимущественно бактерии и грибы, которые расщеп­ляют сложные соединения до простых, пригодных для использования продуцентами.

Первые три группы - неживые компоненты, а осталь­ные составляют живой вес (биомассу). Расположение трех последних компонентов относительно потока поступаю­щей энергии представляет собой структуру экосистемы (рис 8.4). Продуценты улавливают солнечную энергию и переводят ее в энергию химических связей. Консументы, поедая продуцентов, разрывают эти связи. Высвобожден­ная энергия используется консументами для построения собственного тела. Наконец, редуценты рвут химические связи разлагающегося органического вещества и строят свое тело. В результате вся энергия, запасенная проду­центами, оказывается использованной. Органические ве­щества разлагаются на неорганические и возвращаются к продуцентам. Таким образом, структуру экосистемы образуют три уровня (продуценты, консументы, редуцен­ты) трансформации энергии и два круговорота — твердых и газообразных веществ.

В структуре и функции экосистемы воплощены все виды активности организмов, входящих в данное биоти­ческое сообщество: взаимодействия с физической сре­дой и друг с другом. Однако организмы живут для самих себя, а не для того, чтобы играть какую-либо роль в эко-

системе. Свойства экосистемы слагаются благодаря де­ятельности входящих в нее растений и животных. Лишь учитывая это, мы можем понять ее структуру и функции, а также то, что экосистема как единое целое реагирует на изменения факторов среды. Проиллюстрируем дан­ное положение на примере изменений, происходящих в сосновых лесах под действием сернистого ангидрида.

 

Рис. 8.4. Структура экосистемы, включающая один поток энергии (контурная стрелка) и два круговорота веществ: твердых (толстая стрелка) и газообразных (тонкая стрелка). Тонкой прерывистой стрелкой показано участие в круговороте анаэробных бактерий.

Под действием сернистого газа в хвое сосен происхо­дят значительные физиологические и морфометрические изменения. Наблюдается пожелтение концов хвоинок, а затем и их некроз, что в конечном итоге приводит к зна-

чительному уменьшению охвоенности, суховершинности и разреженности крон деревьев. Под влиянием кислых осадков отмечается обеднение травянисто-кустарниково­го яруса, появление множества мертвопокровных участ­ков, что вызывает общее повышение температуры воз­духа под пологом леса, в первую очередь в напочвенном ярусе. Длительная загазованность воздуха вызывает хро­ническое расстройство сосновых древостоев, замедляет их рост и ослабляет устойчивость не только к абиотичес­ким факторам среды, но и к хвоегрызущим вредителям. Увеличению плотности хвоегрызущих чешуекрылых в зоне загрязнения способствуют ослабление физиолого-биохи-мических защитных механизмов растений под воздействи­ем выбросов, содержащих сернистый газ, снижение био­тического пресса на популяции вредителей со стороны паразитических насекомых, хищников и болезней.

В целом сернистый газ отрицательно влияет на раз­витие хвоегрызущих чешуекрылых. Уменьшается масса гусеницы и куколки, ухудшаются репродуктивные пока­затели самок и жизнеспособность отложенных ими яиц. Однако плотность популяции этих насекомых увеличи­вается. Во-первых, снижается смертность куколок, так как в результате повышения температуры под пологом леса гусеницы успевают закончить развитие до того, как под воздействием заморозков осенью уйти в подстилку. Во-вторых, более чувствительные к загрязнению хищни­ки и паразиты снижают свое давление на хвоегрызущих чешуекрылых. Кроме того, уменьшение охвоенности со­провождается еще большей концентрацией мелких, и без того многочисленных гусениц на хвое, что в итоге при­водит к быстрой гибели сосновых лесов.