ПРАВИЛО ЧИСТОТЫ ГАМЕТ (3 ЗАКОН МЕНДЕЛЯ)

Гомозиготные по генотипу особи имеют одинаковые аллельные гены в одном локусе, например ВВ или bb. У гибридов F1 при полном доминировании проявляется только аллель В. Однако во втором поколении проявляются оба аллеля в чистом виде, без какого-либо изменения своих качеств, аналогично тому, что было у исходной родительской пары. Рецессивные гены могут находится в неизменном состоянии под прикрытием доминантных сколь угодно долго. Если в популяции черных собак основная масса гомозиготна, а гетерозиготы встречаются крайне редко, шансы их спаривания невелики, однако если такое происходит, то может родиться коричневый щенок, ничуть не отличающийся от тех, которые родятся у чисто коричневых собак.

Мендель сформулировал правило чистоты гамет, состоящее в том, что у гетерозиготной особи наследственные задатки (гены) не перемешиваются друг с другом, а передаются в половые клетки в неизменном виде.

Сущность правила (принципа) "чистоты гамет":
1) это гипотеза, выдвинутая Г.Менделем (1865)
2) Правило гласит, что находящиеся в каждом организме пары наследственных факторов (в современной формулировке - генов) не смешиваются и не сливаются при образовании зиготы.
3) При гаметогенезе в организме гибрида в гаметы поступает по одной хромосоме из каждой пары гомологичных хромосом, и, следовательно, по ОДНОМУ гену из КАЖДОЙ ПАРЫ генов
4) правило (принцип) "чистоты гамет" служит доказательством дискретного характера наследственности.

 

 

52)Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Центральная догма молекулярной биологии.Один ген молекулы ДНК кодирует один белок, отвечающий за одну химическую реакцию в клеточке.

Вся информация в клеточке хранится в молекуле ДНК— известной двойной спирали, либо «скрученной лестницы». Принципиальная рабочая информация хранится на перекладинах данной лестницы, любая их которых состоит из двух молекул азотистых оснований. Эти основания — аденин, гуанин, цитозин и тимин —обозначают знаками А, Г, Ц и Т. Гены, открытые Грегором Менделем — на самом деле не что другое как последовательности пар оснований на молекуле ДНК. А геном человека — совокупность всех его ДНК — содержит приблизительно 30 000–50 000 генов. У более развитых организмов, в том числе и человека, гены частенько бывают разделены фрагментами «бессмысленной», некодирующей ДНК, а у более обычных организмов последовательность генов традиционно непрерывна. В любом случае, клеточка знает, как прочесть содержащуюся в генах информацию. У человека и остальных высокоразвитых организмов ДНК обвернута вокруг молекулярного остова, совместно с которым она образует хромосому. Вся ДНК человека помещается в 46 хромосомах.

Точно так же, как информацию с жесткого диска, хранящуюся в канцелярии завода, нужно передавать на все устройства в цехах завода, информация, хранящаяся в ДНК, обязана быть транслирована с помощью клеточного технического обеспечения в химические процессы в «теле» клеточки. Основная роль в данной химической трансляции принадлежит молекулам рибонуклеиновой кислоты, РНК. Мысленно разрежьте двуспиральную «лестницу»-ДНК вдоль на две половины, разъединяя «ступеньки», и замените все молекулы тимина (Т) на сходные с ними молекулы урацила (У) — и вы получите молекулу РНК. Когда нужно передавать какой-или ген, особые клеточные молекулы «расплетают» участок ДНК, содержащий этот ген. Сейчас молекулы РНК, в большом количестве плавающие в клеточной воды, могут присоединиться к свободным основаниям молекулы ДНК. В этом случае, так же как и в молекуле ДНК, могут образоваться только определенные связи. После того как все основания РНК выстроятся вдоль ДНК, особые ферменты собирают из них полную молекулу РНК. Сообщение, записанное основаниями РНК, так же относится к исходной молекуле ДНК. В итоге этого процесса информация, содержащаяся в гене ДНК, переписывается на РНК.

Этот класс молекул РНК именуется матричным, либо информационными РНК (мРНК, либо иРНК). Поскольку мРНК намного короче, чем вся ДНК в хромосоме, они могут проникать через ядерные поры в цитоплазму клеточки. Так мРНК переносят информацию из ядра («руководящего центра») в «тело» клетки.

В «теле» клеточки находятся молекулы РНК двух остальных классов, и они оба играются ключевую роль в конечной сборке молекулы белка, кодируемого геном. Одни из них — рибосомные РНК, либо рРНК. Они входят в состав клеточной структуры под заглавием рибосома. Рибосому можно сопоставить с конвейером, на котором происходит сборка.

остальные находятся в «теле» клетки и именуются транспортные РНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой — участок для присоединения аминокислоты . Эти три основания на молекуле тРНК могут связываться с парными основаниями молекулы мРНК. Таким образом, процесс сборки белка представляет собой присоединение определенной молекулы тРНК, несущей на себе аминокислоту, к молекуле мРНК. В конце концов, все молекулы тРНК присоединятся к мРНК, и по другую сторону тРНК выстроится цепочка аминокислот, расположенных в определенном порядке.

Послед-ть ам-к-от — это, как понятно, первичная структура белка. Остальные ферменты завершают сборку, и конечным продуктом оказывается белок, первичная структура которого определена сообщением, записанным на гене молекулы ДНК. Потом этот белок сворачивается, принимая окончательную форму, и может выступать в роли фермента, катализирующего одну химическую реакцию в клетке.

Хотя на ДНК разных живых организмов записаны различные сообщения, все они записаны с внедрением одного и того же генетического кода — у всех организмов каждому триплету оснований на ДНК соответствуют одна и та же аминокислота в образовавшемся белке. Это сходство всех живых организмов — более весомое подтверждение теории эволюции, поскольку оно подразумевает, что человек и остальные живые организмы произошли от одного биохимического предка