Хромосомная теория наследственности Т.Г.Моргана.

Хромосомная теория наследственности, теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом . Первые положения хромосомной теории наследственности были сформулированы Т. Бовери (1902-1907) и У. Сеттоном (1902-1903), а затем детально разработаны в начале XX века школой Т.Г, Моргана. Впоследствии эти положения получили подтверждение при изучении генетического механизма определения пола у животных, в основе которого лежит распределение половых хромосом среди потомков. Основные положения хромосомной теории наследственности за-ключаются в следующем.
1. Гены находятся в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления равно гаплоидному набору хромосом, постоянному для каждого вида организмов {In + 1 для гетерогаметного вида).
2. Каждый ген занимает в хромосоме строго определённое место (локус).
Гены в хромосомах расположены линейно.
3- Сцепление генов может нарушаться в peзультате кроссинговера (перекреста хромосом), в
процессе которого между гомологичными хромосомами происходит обмен одним или несколькими аллельными генами.
4. Расстояние между генами в хромосоме пропорционально частоте кроссинговера между ними.
Т. Морган и его коллеги ошибочно считали, что ген является единицей мутации, рекомбинации и функции, т.е. гены мутируют и рекомбинируют как единое целое.
В 20-30-х гг. XX века А.С. Серебровским и Н.П. Дубининым на примере генов дрозофилы было показано, что гены имеют сложную природу. Это открытие подтвердилось последующими работами зарубежных учёных.

 

 

27)Строение молекул ДНК и РНК

В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или 2-дезоксирибоза, различают рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

В главную (сахарофосфатную) цепь РНК входят остатки рибозы, а в ДНК – 2-дезоксирибозы.
Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин и тимин. Состав РНК отличается тем, что вместо тимина присутствует урацил.

ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.

При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.

· Первичная структура нуклеиновых кислот – это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.В сокращённом однобуквенном обозначении эта структура записывается как ...– А – Г – Ц –...

· Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.

Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.

Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:
Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом, ТИМИН (Т) комплементарен АДЕНИНУ (А), ЦИТОЗИН (Ц) комплементарен ГУАНИНУ(Г). Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.
Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:

- молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи

-молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.

Вторичная структура РНК. В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).
Основная роль РНК – непосредственное участие в биосинтезе белка. Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:

-информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;

-транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа "узнают" по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;

-рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК