Векторное произведение векторов. Свойства векторного произведения.

Векторным произведением векторов и называется вектор , который определяется следующими условиями:

1) Его модуль равен где - угол между векторами и .

2) Вектор перпендикулярен к плоскости, определяемой перемножаемыми векторами и .

3) Вектор направлен так, что наблюдателю, смотрящему с его конца на перемножаемые векторы и , кажется, что для кратчайшего совмещения первого сомножителя со вторым первый сомножитель нужно вращать против часовой стрелки (см. рисунок).

Векторное произведение векторов и обозначается символом :

(25)

или

(26)

Основные свойства векторного произведения:

1) Векторное произведение равно нулю, если векторы и коллинеарны или какой-либо из перемножаемых векторов является нулевым.

2) При перестановке местами векторов сомножителей векторное произведение меняет знак на противоположный (см. рисунок):

Векторное произведение не обладает свойством переместительности.

9) Площадь параллелограмма. Необходимое и достаточное условие коллинеарности двух векторов. для коллинеарности двух векторов и необходимо и достаточно, чтобы они были связаны равенствами или .

Перейдем к координатной форме полученного условия коллинеарности двух векторов.

Пусть вектор задан в прямоугольной декартовой системе координат на плоскости и имеет координаты , тогда вектор имеет координаты (при необходимости смотрите статью операции над векторами в координатах). Аналогично, если вектор задан в прямоугольной системе координат трехмерного пространства как , то вектор имеет координаты .

Следовательно, для коллинеарности двух ненулевых векторов и на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: или .

Для коллинеарности двух ненулевых векторов и в пространстве необходимо и достаточно, чтобы или .

Получим еще одно условие коллинеарности двух векторов, основанное на понятии векторного произведения векторов и .

Если ненулевые векторы и коллинеарны, то по определению векторного произведения , что равносильно равенству . А последнее равенство возможно лишь тогда, когда векторы и связаны соотношениями или , где - произвольное действительное число (это следует из теоремы о ранге матрицы), что указывает на коллинеарность векторов и . Таким образом, два ненулевых вектора и коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.