рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Площадь параллелограмма

Площадь параллелограмма - раздел Образование, Лежит в одной полуплоскости относительно любой прямой, содержащей его сторону Одну Из Параллельных Сторон Параллелограмма Назовем Основанием...

Одну из параллельных сторон параллелограмма назовем основанием, а отрезок, опущенный из любой точки основания на противолежащую сторону – высотой параллелограмма.

Теорема. Площадь параллелограмма равна произведению его основания на высоту.

Дано: параллелограмм – ABCD, основание AD=a, высота BK=h.

Доказать: SABCD = a• h

Доказательство. Если BK и CE – перпендикуляры к прямой АD, то ∆ABK=∆DCE (так как AB=DC и проекция AK=DE). Поэтому площади этих треугольников равны. Площадь параллелограмма ABCD равна сумме двух фигур: треугольника ABK (равного ∆DCE) и трапеции KBCD. Значит, если от площади ABCD вычесть площадь треугольника ABK, получим площадь трапеции KBCD. Тогда площадь параллелограмма ABCD равна площади прямоугольника KBCЕ. А стороны этого прямоугольника равны BC=AD=а и BK=h.

Итак: S ABCD = AD•BK=a•h.

Фигуры с равными площадями называются равновеликими. На данном рисунке параллелограмм АВСD и прямоугольник КВСЕ – равновеликие.

 

Билет№12.

Числа a1, a2, a3, …, an называются пропорциональными числам b1, b2, b3, …, bn, если выполняется равенство: a1/b1 = а2/b2 = a3/b3 = … = an/bn = k, где k – некоторое число, которое называют коэффициентом пропорциональности.

Пример. Числа 6; 7,5 и 15 пропорциональны числам ‑4; 5 и 10. Коэффициентом пропорциональности является число ‑1,5, поскольку

6/-4 = -7,5/5 = 15/-10 = -1,5.

Пропорциональность чисел имеет место быть, если эти числа связаны пропорцией.

Известно, что пропорцию можно составить не менее чем из четырех чисел, поэтому понятие пропорциональности применимо как минимум к четырем числам (одна пара чисел пропорциональна другой паре, или одна тройка чисел пропорциональна другой тройке, и т.д.).

Рассмотрим на рис. 1 два треугольника АВС и А1В1С1 с равными попарно углами: A = A1, B = B1, C = C1.

Стороны, которые противолежат равным парам углов обоих треугольников, называются сходственными. Так, нарис. 1 стороны AB и A1B1, AC и A1C1, BC и B1C1, сходственные, поскольку лежат напротив соответственно равных углов треугольников ABC и A1B1C1.

Дадим определение подобных треугольников:

Два треугольника называются подобными, если их углы попарно равны, а сходственные стороны пропорциональны.

Отношение сходственных сторон подобных треугольников называется коэффициентом подобия.

Подобные треугольники обозначаются следующим образом: Δ ABC ~ Δ A1B1C1.

Итак, на рис. 2 имеем: Δ ABC ~ Δ A1B1C1

углы A = A1, B = B1, C = C1 и AB/A1B1 = ВC/В1C1 = АС/А1С1 = k, где k – коэффициент подобия. Из рис. 2 видно, что у подобных треугольников одинаковые пропорции, и отличаются они лишь масштабом.

Замечание 1: Равные треугольники подобны с коэффициентом 1.

Замечание 2: При обозначении подобных треугольников следует упорядочить их вершины таким образом, чтобы углы при них были попарно равны. Например, для треугольников, изображенных на рисунке 2 говорить, что Δ ABC ~ Δ B1C1A1 некорректно. Соблюдая правильный порядок вершин, удобно выписывать пропорцию, связывающую сходственные стороны треугольников, не обращаясь к чертежу: в числителе и знаменателе соответствующих отношений должны стоять пары вершин, занимающих одинаковые позиции в обозначении подобных треугольников. К примеру, из записи «Δ ABC ~ Δ KNL» следует, что углы A = K, B = N, C = L, и АВ/KN = BC/NL = AC/KL.

Замечание 3: Те требования, которые перечислены в определении подобных треугольников, являются избыточными. Признаки подобия треугольников, которые содержат меньше требований к подобным треугольникам докажем чуть позже.

 

– Конец работы –

Эта тема принадлежит разделу:

Лежит в одной полуплоскости относительно любой прямой, содержащей его сторону

Многоугольник называется выпуклым если он лежит в одной полуплоскости относительно любой прямой содержащей его сторону Сумма углов выпуклого... Центральная и осевая симметрии Центральная... Сравнение симметрий...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Площадь параллелограмма

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства параллелограмма
Для параллелограмма верно каждое из последующих утверждений Пр

Центральная симметрия
Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1 (рис.1). Точка О считается симметричной самой себе. Пример центральной с

Осевая симметрия
Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (рис.3). Каждая точка прямой а сч

Пропорциональные отрезки
Отношением отрезков AB и CD называется отношение их длин, то есть . Говорят, что отрезки AB и СD пр

Доказательство.
Пусть ABCD – данный параллелограмм, O – точка пересечения диагоналей данного параллелограмма. Δ AOD = Δ COB по первому признаку равенства треугольников (OD = OB, AO = OC по условию т

Теорема.
Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.

Доказательство.
Пусть дан четырехугольник ABCD. ∠ DAB = ∠ BCD и ∠ ABC = ∠ CDA. Проведе

Доказательство.
Пусть точки A1, A2, A3 – точки пересечения параллельных прямых с одной из сторон угла. А точки B1, B2, B3 – соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если A

Теорма о средней линии треугольника
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. Пусть MN — средняя линия треугольника ABC (рис 1). Докажем, что MN || AC и MN = 1/2 AC. Т

Доказательство
Рассмотрим прямоугольник со сторонами a, b и площадью S. Докажем, что S = ab. Достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке

Теоремы о касательной к окружности.
Теорема 1. Прямая, перпендикулярная к радиусу в конечной его точке, лежащей на окружности, является касательной к окружности. Пусть ОМ— радиус окружности, СD_|_OМ (черт

Доказательство.
Рассмотрим трапецию ABCD с основаниями AD иBC, выс

Теорема доказана.
Так же площадь трапеции можно найти с помощью следующих формул: 1. S = mh, где m — средняя линия, h — высота трапеции. 2.

Построения, основанные на свойствах прямоугольного треугольника
Задача 2. Даны два отрезка a и b. Постройте отрезок: а) x = ; б) x =

Теорема, обратная теореме Пифагора
Теорема (теорема, обратная теореме Пифагора). Если в треугольнике со сторонами a, b и c выполняется равенство c2 = a 2 + b 2

Доказательство
Рассмотрим пря

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги