Функции нескольких переменных

Частной производной от функции по независимой переменной называется предел отношения частного приращения по к приращению при стремлении к нулю, т.е.

, (2.1)

вычисленный при постоянном .

Частной производной от функции по независимой переменной называется предел отношения частного приращения по к приращению при стремлении к нулю, т.е.

 

, (2.2)

вычисленный при постоянном .

В общем случае, частная производная функции нескольких переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции нескольких переменных находят по формулам и правилам вычисления производных функции одной переменной.

Пример 2.1. Найти частные производныеи , если .

Решение. ,

.

Пример 2.2. Найти частные производные , и , если .

Решение. ,

,

.

Полным приращением функции в точке называется разность , где и – произвольные приращения аргументов.

Функция называется дифференцируемой в точке , если в этой точке полное приращение можно представить в виде

, (2.3)

где , – бесконечно малая величина при , А и В – постоянные.

Полным дифференциалом функции называется главная часть полного приращения , линейная относительно приращений аргументов и , т.е. .

Дифференциалы независимых переменных совпадают с их приращениями, т.е. и .

Полный дифференциал функции двух аргументов находится вычисляется по формуле

. (2.4)

Аналогично, полный дифференциал функции трех аргументов вычисляется по формуле

. (2.5)

 

Пример 2.3. Найти полный дифференциал , если функция .

Решение. Найдем частные производные: , .

Тогда полный дифференциал принимает вид: .

 

Для дифференцируемой функции при достаточно малом , если и , справедливо приближенное равенство

. (2.6)

Формула (2.6) используется в приближенных расчетах.

 

Пример 2.4. Вычислить приближенно .

Решение. Рассмотрим функцию . Тогда ,

где , , , .

Вычислим частные производные: , .

По формуле (2.6) получим: .