Принцип Нернста

Когда же физическая система — любой вид ассоциации атомов — следует «динамическому закону» (в том значении, которое придавал ему Планк) или обнаруживает «черты часового механизма»? На этот вопрос квантовая теория дает краткий ответ: при температуре абсолютного нуля. При приближении к этой температуре молекулярная неупорядоченность перестает влиять на физические явления. Это было, между прочим, обнаружено при исследовании химических реакций в широких температурных границах и при последующей экстраполяции результатов на фактически недостижимую температуру, равную абсолютному нулю; это и есть знаменитый термодинамический принцип Вальтера Нернста, который иногда, и не без основания, называют третьим законом термодинамики (первый — принцип сохранения энергии, второй — принцип энтропии).

Квантовая теория дает обоснование эмпирическому закону Нернста и позволяет определить, как близко данная система должна подойти к абсолютному нулю, чтобы выявить черты "динамического" поведения. Какая же температура в каждом отдельном случае практически эквивалентна нулю?

Так вот, не следует думать, что это должна быть всегда очень низкая температура. Действительно, открытие Нернста было подсказано тем фактом, что даже при комнатной температуре энтропия играет удивительно незначительную роль во многих химических реакциях. (Напомню, что энтропия является прямой мерой молекулярной неупорядоченности, а именно ее логарифмом).