рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сгорание в карбюраторных двигателях

Сгорание в карбюраторных двигателях - раздел Образование, ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ   В Карбюраторных Двигателях К Моменту Появления Искры Рабочая ...

 

В карбюраторных двигателях к моменту появления искры рабочая смесь, состоящая из воздуха, парообразного или газообразного топлива и остаточных газов, заполняет объем сжатия. Процессы сгорания происходят вблизи в.м.т. при малом изменении объема рабочего тела. Поэтому изучать процесс сгорания (изменения давления и температуры) удобнее на развернутых индикаторных диаграммах давления рот угла поворота коленчатого вала φ.

Если зажигание выключено ( см рис. 25, пунктирная линия ), то давление цилиндре изменяется почти симметрично относительно вертикальной линии соответствующей в.м.т., некоторая несимметричность получается вследствие теплообмена между газом и стенками, а также некоторой утечки газа через поршневые кольца и клапаны.

На рис т.1 – момент возникновения искры на свече зажигания и соответствует углу θ (угол опережения зажигания) –углу поворота коленчатого вала до положения поршня в в.м.т. В этот момент давление в

цилиндре р1. После возникновения искры давление некоторое время, пропорциональное углу φ1 поворота вала, продолжает изменяться (так же как и при выключенном зажигании) до давления р2 соответствующее т.2.

 

 

 

Рис. 25. Процесс сгорания в карбюраторном ДВС

 

В т.2 происходит изменение кривизны кривой давления и давление быстро нарастает до т.3 р3 = рz - максимальное давление цикла значительно превосходящее р2

Первая фаза сгорания т.1 –т.2 – фаза , соответствующая углу φ1 , образования начального очага пламени с малым тепловыделением. Эта фаза завершается в тот момент, когда количество теплоты оказывается достаточным для заметного повышения давления. Этому соответствует сгорание объема смеси равного 6-8% объема камеры сгорания. Эта фаза называется задержкой воспламенения, а угол φ1 – углом задержки воспламенения, и включает периоды собственно химической задержки воспламенения и образования начального очага пламени. Если количество теплоты оказывается недостаточным, то кривая давления будет продол-жать повторять кривую давления при выключенном зажигании. Угол опережения зажигания зависит от продолжительности задержки воспламенения, которая, в свою очередь, зависит от ряда факторов:

- состава рабочей смеси - αкоэффициента избытка воздуха. При α = 1 все топливо не может сгореть вследствие невозможности получения идеальной рабочей смеси. Полное сгорание смеси возможно только при

α > 1, т.е при обедненной смеси;

- степень сжатия, определяющая подготовленность топлива к воспламенению;

- энергия источника зажигания;

- скорость вращения коленчатого вала. С увеличением числа оборотов горючая смесь быстрее поступает в цилиндр, увеличивается турбулентность и интенсивность нагрева смеси – это ускоряет процесс сгорания.

 

Влияние числа оборотов двигателя на задержку воспламенения по времени tφ1 и в градусах поворота коленчатого вала φ1

 

Обороты двигателя об/мин
tφ1 мсек 2,73 1,67
φ1 град.

 

Так при увеличении числа оборотов с 1100 до 2000 в мин. Время задержки воспламенения сократилось с 2,73 до 1,67 мс, а угол φ1 увеличился с 18 до 23 О. При неизменном углеопережения зажигания θ

Рост числа оборотов двигателя ухудшает его экономичность. Поэтому необходимо постоянно корректировать уголθ при изменении числа оборотов. Автоматическое корректирование угла опережения зажигания происходит с помощью центробежного регулятора.

Испытания двигателя двигателя ХОНДА показали, что при увеличении оборотов двигателя с 2000 до 6000 угол опережения зажигания необходимо увеличить с 17 до420.

 

Наивыгоднейшие углы опережения зажигания в градусах поворота коленчатого вала и в мсек при различных скоростях вращения коленчатого вала двигателя Хонда, полученные экспериментально в МАМИ

 

N об/мин
Θ, град
Θ, мсек 1,40 1,39 1,37 1,33 1,17 1,03

 

 

- нагруженность двигателя. Экспериментальные данные показывают,что при дросселировании (прикрытии дроссельной заслонки) и постоянном числе оборотов период задержки воспламенения и по времени и по углу поворота вала удлиняется.

На рис т.1 – момент возникновения искры на свече зажигания и соответствует углу θ (угол опережения зажигания) –углу поворота коленчатого вала до положения поршня в в.м.т. В этот момент давление в

 

 

Влияние степени открытия дроссельной заслонки на продолжительность задержки воспламенения при n = const.

 

Продолжительность сгорания Открытие дроссельной заслонки
полное среднее малое
tφ1, мсек. 2,57 3,18 3,95
φ1, град.

 

 

цилиндре р1. После возникновения искры давление некоторое время, пропорциональное углу φ1 поворота вала, продолжает изменяться (так же как и при выключенном зажигании) до давления р2 соответствующее т.2приблизит окончание его к в.м.т. Для автоматического увеличения угла опережения зажигания при дросселировании используют вакуум-корректоры. При их же отсутствии двигатель при неполных нагрузках работает с недостаточными или избыточными углами опережения зажигания и, следовательно, с перерасходами топлива. На рис. 26 приведены индикаторные диаграммы циклов с нормальным, ранним и поздним угдами опережения зажигания.

 

 

Рис. 26. Схемы индикаторных диаграмм при: а – слишком позднем зажигании; б – наивыгоднейшем зажигании; в – слишком раннем зажигании

 

2-я фаза. Линия 2-3 фаза распространения пламени. В течении 2-й фазы происходит основное тепловыделение и резко увеличивается скорость сгорания. Скорость тепловыделения в этой фазе определяет быстроту нарастания давления по углу поворота вала φ характеризующуюся отношением dp/dφ , МПа/град. – на диаграмме это тангенс угла наклона касательной к данной точке кривой давления. Ее может характеризовать и отношение Δ р/Δφ, где Δ р = рΖ - р2; Δφ = φΖ – φ2; , где рΖир2 - давления в начале сгорания и максимальное соответственно; φΖиφ2 - углы поворота вала в начале сгорания и при максимальном давлении соответственно. Быстрота нарастания давления характеризует резкость приложения нагрузки к деталям кривошипно-шатунного механизма. С увеличением радиуса кривизны переходного участка жесткость работы уменьшается.

Примерные скорости нарастания давления:

Для ε = 5-7 Δ р/Δφ = 0,09 – 0,13 МПа,

ε = 8-9 Δ р/Δφ = 0,16 – 0,2 МПа.

На продолжительность 2-й фазы влияют дополнительно:

- расположение свечи и конфигурация камеры сгорания;

- момент возникновения искры;

- скорость движения и турбулентность рабочей смеси.

Следует отметить, что мах Т и мах р не совпадают по времени. Мах давление достигается до достижения мах температуры. Сдвиг максимумов

является результатом совместного влияния подвода теплоты при сгорании и изменения объема (увеличения) рабочего тела вследствие движения поршня.

Имеется и 3-я фаза – догорание по линии расширения. Продолжительность ее зависит от: состава смеси; момента зажигания; степени турбулизации догорающей смеси.

– Конец работы –

Эта тема принадлежит разделу:

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

факультет МиАС... Содержание дисциплины... Введение Двигатели внутреннего сгорания Роль и применение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сгорание в карбюраторных двигателях

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Роль и применение ДВС в строительстве
Двигателем внутреннего сгорания (ДВС) называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно

Краткая история развития ДВС
Первый двигатель внутреннего сгорания (ДВС) был изобретен французским инженером Ленуаром в 1860 г. Этот двигатель во многом повторял паровую машину, работал на светильном газе по двухтактному циклу

Основные механизмы и системы двигателя
ДВС состоит из кривошипно-шатунного механизма, механизма газораспределения и пяти систем: питания, зажигания, смазки, охлаждения и пуска. Кривошипно-шатунный механизм предназначен для восп

Теоретические и действительные циклы
  Характер рабочего процесса в двигателе бывает различный – подвод теплоты (сгорание) происходит при постоянном объеме (вблизи ВМТ -это карбюраторные двигатели) или при постоянном дав

Наддув, назначение и способы наддува
1.7.3. Процесс сжатияслужит: 1 для расширения температурных пределов между которыми протекает рабочий процесс; 2 для обеспечения возможности получения максимально

Теплообмен в процессе сжатия
В начальный период сжатия после закрытия впускного клапана или продувочных и выпускных окон температура заряда, заполнившего цилиндр, ниже температуры стенок, головки, и днища поршня. Поэтому в пер

Показатели эффективности, экономичности и совершенства конструкции двигателей
Индикаторные показатели:     Рис. 20. Индикаторная диаграмма четырехтактного

Показатели токсичности отработавших газов и способы снижения токсичности
  Исходными веществами в реакции горения является воздух, содержащий примерно 85% углерода, 15% водорода и другие газы и углеводородное топливо, содержащее примерно 77% азота, 23% кис

Пределы воспламеняемости топливовоздушных смесей
      Рис. 24. Температуры сгорания бензино-воздушных горючих смесей разных составов: Т

Детонация.
  Детонация – сложный химико-тепловой процесс. Внешними признаками детонации являются появление звонких металлических стуков в цилиндрах двигателя, снижение мощности и перегрев двигат

Сгорание в дизельных двигателях
  Особенности процесса сгорания, рис. 28: - подача топлива начинается с опережением на угол θ до в.м.т. и заканчивается после в.м.т.; - изменение давления от т.

Формы камер сгорания дизельных ДВС
  Неразделенные камеры сгорания.   В неразделенных камерах сгорания Рис.29 улучшение процесса распыливания топлива и перемешивания его с воздухом достига

Кривошипно-шатунный и газораспределительный механизмы
3.1. Кривошипно-шатунный механизм (рис.33 )предназначен для восприятия давления газов и преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала Он

Наддув, назначение и способы наддува
Наддув цилиндров двигателей может быть либо динамическим, либо осуществляться при помощи специального нагне­тателя (компрессора). Различают три системы наддува при помощи нагнетателей: с п

Системы питания двигателей
  4.1 Система питания дизелей. Система питания осуществляет подачу топлива в ци­линдры. При этом должны обеспечиваться высокие мощностные

Система питания карбюраторных двигателей
  Приготовление и подача к цилиндрам карбюраторных двигате­лей горючей смеси, регулирование ее количества и состава осу­ществляется системой питания, работа которой оказывает большое

Контактно-транзисторная система зажигания
КТСЗ начала появляться на автомобилях в 60-х годах. При увеличении степени сжатия, использовании более бедных рабочих смесей и с увеличением частоты вращения коленчатого вала и числа цилинд­ров кла

Бесконтактно-транзисторная система зажигания
БТСЗ начали применять с 80-х годов. Если в КСЗ прерыватель непосредственно размыкает первичную цепь, в КТСЗ – цепь управления, то в БТСЗ (рис.61-63) прерывателя нет и управление становится бесконта

Микропроцессорные системы управления двигателем
МСУД стали устанавливать на автомобили с середины 80-х годов на легковые автомобили оборудованные системами впрыска топлива. Система управляет двигателем по оптимальным характеристикам и н

Крышка распределителя
Наружную поверхность крышки распределителя также как и катушки зажигания необходимо содержать в чистоте. У высоких «жигулевских» крышек стекание импульса по наружной поверхности на корпус распредел

Свечи зажигания
Свечи зажигания служат для образования электрической искры, необходимой для воспламенения рабочей смеси в цилиндрах двигателя.

Контакты прерывателя
  Надежность классической системы зажигания (KC3) в существен­ной мере зависит от прерывателя. Часто бывает так, что о прерывателе (кстати, как и о других элементах системы зажигания)

Системы смазки и охлаждения и пуска
Основные положения.Система смазки двигателей предназна­чается для предотвращения повышенного изнашивания, перегрева и заедания трущихся поверхностей, уменьшения затраты индикатор­н

Система охлаждения
  В поршневых двигателях в процессе сгорания рабочей смеси температура в цилиндрах двигателя повышается до 2000—28000 К. К концу процесса расширения она снижается до 1000—1

Система пуска
  Пуск поршневых д. в. с., независимо от типа и конструкции, осуществл-яется вращением коленчатого вала двигателя от постороннего источника энергии. При этом частота вращения должна о

Топлива
Топлива для ДВС – продукты переработки сырой нефти (бензин, дизельное топливо)- Основная часть его – углеводороды. Бензин получают путем конденсации легких фракций переработки неф

Моторное масло
7.3.1.Требования, предъявляемые к моторным маслам.В поршневых двигателях для смазки деталей используют масла главным обра­зом нефтяного происхождения. Физико-химические свойства масел обусл

Охлаждающие жидкости
Через систему охлаждения отводится 25-35% общего тепла. Эффективность и надежность системы охлаждения в значительной степени зависит от качества охлаждающей жидкости. Требования к охлаж

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги