ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ.

К жирорастворимым относят витамины А, D, Е и К. О витаминах D и K будет рассказано в разделах, посвященных гемостазу и минеральному обмену.

Витамин А. Ретиноиды. К группе витамина А (природных ретиноидов) в настоящее время относят:

1. all-транс-ретинол (витамин А1) – содержится в печени и жире морских рыб;

2. 3-дегидро-ретинол (витамин А2) – содержится в печени и жире пресноводных рыб, обладает 40% активности витамина А1;

3. all-транс-ретиналь;

4. ретиноевую кислоту.

В организм человека витамин А поступает в основном в виде ретинола и его эфиров с пальмитиновой кислотой. Витамин А содержится только в продуктах животного происхождения: рыбьем жире, сливочном масле и яичном желтке, печени морских рыб (треска, морской окунь) и животных (кит, морж, тюлень). Продукты растительного происхождения содержат предшественники витамина А – провитамины из группы каротиноидов (a-, b- и g-каротины). Каротиноиды находятся в моркови, салате, шпинате, петрушке, луке, щавеле, красном перце, смородине, чернике, абрикосах, персиках и др. Наиболее активным каротиноидом является b-каротин, который с химической точки зрения представляет 2 молекулы ретинола, соединенные изопреновыми радикалами. Однако, активность каротиноидов в 2-4 раза ниже, чем активность ретиноидов. Это связано с тем, что каротиноиды хуже всасываются и не полностью подвергаются трансформации в ретинол.

Поскольку активность каждого из ретиноидов различна, их подвергают биологической стандартизации и часто дозируют в международных единицах активности (МЕ). 1МЕ соответствует активности 0,3 мкг ретинола или 0,6 мкг b-каротина, при этом 1МЕ ретинола эквивалентна 1МЕ b-каротина. Для учета различной эффективности ретиноидов и каротиноидов вводят понятие ретинолового эквивалента (RE). 1 мкг RE равен 1 мкг ретинола или 6 мкг b-каротина или 12 мкг других каротиноидов пищи.

ФК: Лекарственные средства на основе витамина А вводят внутрь в виде эфиров, которые подвергаются гидролизу при участии гидролаз поджелудочной железы и слизистой оболочки кишечника. После того, как свободный витамин поступит внутрь эпителиальных клеток кишечника он вновь ресинтезируется в эфир пальмитиновой кислоты и в таком виде поступает в кровь. Внутримышечно витамин А вводят в виде эфира уксусной кислоты. Биодоступность витамина А не превышает 12% при любом из указанных путей введения.

В крови витамин А соединяется со специальным ретинол-связывающим протеином (RBP), который образуется в печени. Витамин не связанный с этим белком является токсичным. Далее комплекс витамин А – RBP соединяется с еще одним белком – транстерритином, который препятствует фильтрации витамина в почках.

На поверхности клеток-мишений в тканях располагаются рецепторы к RBP, которые отщепляют витамин А от белкового комплекса и переносят в цитоплазму клетки. Ретиноевая кислота поступает внутрь клетки путем липидной диффузии без участия рецепторов.

Метаболизм витамина А протекает в печени, при этом он вначале окисляется до ретиноевой кислоты, а затем до окси- и эпоксиретиноевой кислоты, которые в виде глюкуронидов выделяются с желчью.

Механизм действия и фармакологические эффекты ретиноидов. В организме каждый ретиноид выполняет свою роль:

· ретиналь – обеспечивает работу световоспринимающих структур сетчатки;

· ретинол – участвует в росте и дифференцировке тканей, работе репродуктивной системы, активации рецепторов тиреоидных гормонов и витамина D, тормозит апоптоз эпителиальных клеток;

· ретиноевая кислота – обеспечивает дифференцировку тканей и усиление апоптоза эпителиальных клеток.

Ретиналь. Обеспечивает процесс «сумеречного» или черно-белого зрения. Поступающий в организм ретинол подвергается изомеризации в 11-цис-ретинол, который затем окисляется до 11-цис-ретиналя. Поступая в фоторецепторные клетки сетчатки 11-цис-ретиналь протонируется в основание Шиффа и соединяется с e-аминогруппами остатков лизина белка опсина, при этом образуется родопсин (зрительный пурпур).

Схема 1. Участие витамина А в фоторецепции. ROL – ретинол, RAL – ретиналь, ФДЭ - фосфодиэстераза. Процесс перехода родопсина в батородопсин запускает фотон света.

Под действием фотона света родопсин переходит в богатый энергией промежуточный продукт – батородопсин, из которого через несколько стадий образуется активный метародопсин II. Метародопсин II активирует особый G-белок трансдуцин, который присоединяет молекулу ГТФ и получившийся комплекс стимулирует цГМФ-зависимую фосфодиэстеразу – фермент, который разрушает цГМФ. цГМФ поддерживает натриевые каналы фоторецептора в активном состоянии, обеспечивая ток ионов натрия и выделение тормозного медиатора ГАМК. Действуя на ГАМКС-рецепторы ГАМК приводит к гиперполяризации мембраны нейронов. Разрушение цГМФ под влиянием фосфодиэстеразы приводит к закрытию каналов и прекращению тока натрия, в итоге из фоторецепторных клеток выбрасывается другой медиатор – глютамат и нейроны генерируют потенциал действия, который проводится в мозг и подвергается анализу.

11-цис-ретиналь в составе метародопсина II переходит в транс-форму, это приводит к распаду молекулы и выделению транс-ретиналя и опсина, в последующем транс-ретиналь способен вновь изомеризоваться в цис-форму и включаться в акт световосприятия.

Ретинол и ретиноевая кислота. В цитоплазме клетки ретинол изомеризуется в 9-цис-ретинол, который окисляется вначале до 9-цис-ретиналя, а затем до 9-цис-ретиноевой кислоты. All-транс-ретиноевая кислота не подвергается никаким метаболическим изменениям в клетке. Таким образом, внутри клетки активными формами витамина А являются транс-ретиноевая кислота и 9-цис-териноевая кислота. Действие данной группы ретиноидов осуществляется через специальные цитозольные рецепторы. Кратко рассмотрим особенности данной группы рецепторов клетки.

Схема 2. Цитозольные рецепторы клетки. В верхней части представлена схема активации цитозольного рецептора. A-F – домены молекулы (пояснения смостри в тексте). Напротив каждого из типов рецепторов представлены обозначения его лигандов: GR – глюкокортикоидный рецептор, MR – минералокортикоидный рецептор, PR – прогестиновый рецептор, AR – андрогеновый рецептор, ER – эстрогеновый рецептор, TR – тиреоидный рецептор, RAR - рецептор ретиноевой кислоты, VDR – рецептор витамина D, PPAR – рецептор эйкозаноидов (пероксисомный пролифераторный рецеитор), EcR – экдизоновый рецептор, 9-cis-RAR – рецептор 9-цис-ретиноевой кислоты, NGFI-B – рецептор фактора роста нервов.

Цитозольные рецепторы состоят из 6 доменов: A-F. Области A, B, D, F – вариабельные области, которые различаются у каждого вида, области С и Е - консервативные. Участок D является шарнирным участком, формирующим петлю рецептора. Участок C – ДНК связывающий участок, окружен 2 ионами Zn2+ (цинковые пальцы), при помощи которых он связывается со специфическими областями ДНК. Домен Е – лиганд связывающий участок, состоит из 3 a-спиралей, которые лежат в виде сэндвича, он способен связывать лиганды, подстраиваясь при этом под их конформацию.

Все цитозольные рецепторы могут быть разделены на 4 семейства:

· Гомодимерные рецепторы стероидных гормонов. При взаимодействии с молекулами гормонов рецепторы объединяются в пары из 2 одинаковых молекул, которые переносятся в ядро клетки и связываются с палиндромными последовательностями ДНК запускают процесс транскрипции ряда генов. Подробнее об этих рецепторах будет рассказано в разделе, посвященном стероидным гормонам.

· Гетеродимерные рецепторы тиреоидных гормонов, ретиноидов, витамина D, эйкозаноидов. При взаимодействии с молекулой лиганда эти рецепторы объединяются в пары с RXR-рецептором и комплекс поступает в ядро клетки, где С-доменом связывается с рецепторным участком ДНК. Для ретиноидов рецептором является последовательность AGGTCA повторенная 5 раз. Активация этой последовательности запускает процесс транскрипции ряда генов.

· Гомодимерные рецепторы 9-цис-ретиноевой кислоты (RXR-рецепторы) – представлены RXR-белками, которые связывают 9-цис-ретиноевую кислоту и, объединяясь в пары, поступают в ядро клетки, где активируют синтез ряда генов.

· Мономерные рецепторы ростовых факторов. Связываются со своими лигандами (фактор роста нервов, трансформирующие факторы a- и b и др.) и поступают в ядро клетки, где активируют синтез ряда генов.

Таким образом, ретиноевая кислота связывается с RAR-рецепторами II семейства, а 9-цис-ретиноевая кислота – с RXR-рецепторами III семейства и комплексы RAR/RXR и RXR/RXR транслоцируются в ядро, где при помощи нуклеофактора-kВ активируют геном клетки. Возникающие при этом эффекты представлены в следующих таблицах:

Таблица 1. Эффекты ретиноевой кислоты (RAR/RXR-рецепторы)

Продукт активации генома Вызываемый эффект
Ферменты синтеза фосфоаденилатфосфосульфата · Синтез мукополисахаридов (хондроитинсульфат, дерматан и кератансульфат, гиалуроновая кислота) – основных компонентов соединительной ткани, хрящей, костей. · Синтез сульфоцереброзидов. · Синтез таурина (образование таурохолевой кислоты, СТГ, передача нервного импульса, синтез кальций-связывающих белков). · Синтез цитохромов Р450 в печени, альбумина и трансферрина.
Синтез ферментов гликозилирования белков · Образование гликопротеинов крови (a1-макроглобулин). · Завершение фагоцитоза. · Образование ламинина и фибронектина, тормозящих рост клеток и предупреждающих их кератинизацию.
Синтез тканевого активатора плазминогена · Усиление фибринолиза и снижение вязкости крови.
Синтез транс-глютаминазы II типа · Образование поперечных сшивок между g-карбоксилом глютаминовой кислоты и e-аминогруппами лизина гистоновых белков, приводящее к запуску апоптоза.
Синтез антигенов I класса гистосовместимости · Реакции клеточного иммунитета – противовирусный, антинеопластический.