Цикл Карно. Тепловые и холодильные машины.

Анализируя работу тепловых двигателей, французский инженер С. Карно в 1824г. пришел к выводу, что наивыгоднейшим круговым процессом является обратимый круговой процесс, состоящий из двух изотермических и двух адиабатических процессов, т.к. он характеризуется наибольшим коэффициентом полезного действия. Такой цикл получил название цикла Карно. В прямом цикле Карно рабочее тело изотермически, а затем адиабатически расширяется, после чего снова изотермически (при более низкой температуре) и потом адиабатически сжимается. Т.е. цикл Карно ограничен двумя изотермами и двумя адиабатами.

При изотермическом расширении от нагревателя отбирается тепло (на участке 1-2 рис. 9.11). Вследствие этого температура газа поддерживается неизменной. Соответственно, параметры точки 2 будут равны . На участке 2-3 происходит адиабатное расширение. Внутренняя энергия газа уменьшается и его температура падает до Т2. Параметры точки 3 - . На участке 3-4 газ изотермически сжимается. Параметры точки 4 - . Выделяющееся при этом тепло отбирается холодильником. Участок 4-1 -адиабатическое сжатие до исходного состояния, соответствующего точке 1. Таким образом, завершен цикл “1-2-3-4-1 и в итоге нагреватель отдал газу теплоту , а холодильник отобрал Разность определяет полезную работу газа за один цикл, так как согласно I началу термодинамики , но для кругового процесса и, следовательно .

 

Отношение полезной работы к затраченной энергии нагревателя определяет коэффициент полезного действия (к.п.д.) тепловой машины:

 

Эта формула справедлива для любого обратимого и необратимого процесса.

Определим коэффициент полезного действия цикла Карно для обратимого процесса. Теплота подводится на участке 1-2 и отводится на участке 3-4. Для изотермического процесса внутренняя энергия Q=const и все подводимое тепло расходуется на работу .

Тогда

или

Для изотермического процесса работа


С учетом последних выражений

 

 

Покажем, что


Так как процессы на участках 2-3 и 1-4 адиабатические, для определения связи между и и и используем уравнение Пуассона в виде

Следовательно,

и

Разделим эти уравнения и получим

Тогда выражение для к.п.д. (9.24) примет вид

Эта формула справедлива только для обратимого цикла Карно.

Теоремы Карно.

1 Все обратимые машины, работающие по циклу Карно, имеют, е зависимо от природы рабочего тела, одинаковый КПД при условии если у них общий нагреватель и холодильник.

2 Если две тепловые машины имеют общий нагреватель и холодильник и одна обратимая, а другая необратимая, то КПД обратимой больше необратимой


Любой тепловой двигатель состоит из 3-х основных частей: рабочего тела, нагревателя и холодильника.

Рабочее тело получает некоторое количество теплоты , от нагревателя. При сжатии газ передаёт некоторое количество теплоты холодильнику.

Полученная работа, совершаемая двигателем за цикл:

  (неравенство – характеризует реальные машины, равенство для идеальных машин).

(Замечание: реальные тепловые двигатели обычно работают по так называемому разомкнутому циклу, когда газ после расширения выбрасывается, и сжимается новая порция. Однако это существенно не влияет на термодинамику процесса. В замкнутом цикле расширяется и сжимается одна и та же порция.).

Холодильная машина. Цикл Карно обратим, следовательно, его можно провести в обратном направлении. (4-3-2-1-4 (рис.15.3)) От холодильной камеры поглощается тепло .

Нагревателю рабочее тело передаёт некоторое количество теплоты . Внешние силы совершают работу , тогда В результате цикла некоторое количество теплоты переходит от холодного тела к телу с более высокой температурой. Реально рабочим телом в холодильной установке обычно служат пары легкокипящих жидкостей– аммиак, фреон и т. п. К машине подводится энергия от
Рис. 15.3

электрической сети. За счёт этой энергии и совершается процесс “передачи теплоты” от холодильной камеры к более нагретым телам (к окружающей среде).

Эффективность холодильной установки оценивается по холодильному коэффициенту:

 

Тепловой насос. Это непрерывно действующая машина, которая за счёт затрат работы (электроэнергии) отбирает тепло от источника с низкой температурой (чаще всего близкой к температуре окружающей среды) и передаёт источнику тепла с более высокой температурой количество теплоты , равна сумме тепла, отобранного от низкотемпературного источника и затраченной работы: .

“Отопительный” коэффициент
 

всегда больше единицы (максимально возможный ).

Для сравнения: если отапливать помещение с помощью обычных электронагревателей, то количество теплоты, выделенное в нагревательных элементах, в точности равно расходу электроэнергии.