Cилы инерции. Импульс. Закон сохранения импульса.

Основным положением механики Ньютона является утверждение о том, что действие на тело со стороны других тел вызывает их ускорение. В системах координат, движущихся с ускорением относительно выбранной нами инерциальной системы, так называемых неинерциальных системах, формально справедливо и обратное — возникают силы, связанные не с реальным действием других тел, а с наличием указанных ускорений. Такие силы называют силами инерции. Рассмотрим несколько примеров.

1. Прямолинейное движение системы координат с ускорением a0 относительно инерциальной системы. В этом случае на тело с массой m в неинерциальной системе координат действует сила инерции, равная

fи = -ma0. (1.49)

2. Центробежная сила инерции. Рассмотрим движение тела во вращающейся системе координат. Сначала рассмотрим вращение тела в неподвижной системе. В ней тело будет испытывать центростремительное ускорение, которое, и будет заставлять его вращаться. По третьему закону Ньютона центростремительной силе соответствует центробежная сила, приложенная к нити, удерживающей вращающееся тело. Во вращающейся системе координат тело покоится, но центростремительное ускорение по-прежнему отлично от нуля. Это ускорение может быть связано теперь с существованием центробежной силы , направленной от центра вращения.

3. Свободно падающий лифт. Пусть ускорение свободно падающего лифта — неинерциальной системы отсчета — g. Сила инерции, действующая на материальную точку с массой m, в системе отсчета, связанной с лифтом, равна mg. На тело в падающем лифте действуют, таким образом, две силы: — сила тяжести и сила инерции. Суммарная сила, действующая в свободно падающем лифте на материальную точку, равна нулю, т. е. сила инерции уравновешивает силу тяготения — в лифте возникает состояние невесомости. Аналогия между поведением тел в гравитационном поле и в неинерциальной системе отсчета составляет принцип эквивалентности сил тяготения и инерции: он используется в теории тяготения, основанной на теории относительности. В основе принципа эквивалентности лежит равенство инертной и гравитационной масс.

 

Второй закон Ньютона можно записать в другой форме. Согласно определению:

,

тогда

или

Вектор называется импульсом или количеством движения тела и совпадает по направлению с вектором скорости , а выражает изменение вектора импульса.

Преобразуем последнее выражение к следующему виду:

 

Вектор называется импульсом силы .

Это уравнение является выражением основного закона динамики материальной точки: изменение импульса тела равно импульсу действующей на него силы.

 

Рассмотрим механическую систему состоящую из n тел, масса и скорость которых соответственно равны m1, m2, …, mn, а скорости – .

Пусть – равнодействующие внутренних сил, действующих на каждое из этих тел, а – равнодействующие внешних сил. Запишем II закон Ньютона для каждого из n тел механической системы.

 

сложив эти уравнения почленно, получим:

 

Так как геометрическая сумма всех внутренних сил механической системы рана нулю, то

 

 

Таким образом, производная по времени от импульса механической системы равна геометрической сумме внешних сил, действующих на систему.

В случае отсутствия внешних сил, т.е. система замкнута, имеем

 

Последняя запись является законом сохранения импульса.

Импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.

Закон сохранения импульса носит уникальный характер, т.к. он справедлив и выполняется для замкнутых систем микрочастиц, т.е. закон сохранения импульса является фундаментальным законом природы.

Закон сохранения импульса является следствием определенного свойства симметрии пространства – его однородности.