Изопроцессы. Уравнение состояния идеального газа.

Рассмотрим ряд равновесных процессов в идеальном газе, имеющих важное значение в термодинамике. При равновесных процессах термодинамические параметры P, V и T в каждый момент времени связаны между собой уравнением состояния.

1) Изотермический процесс.

При изотермическом процессе температура газа остается постоянной в течение всего процесса. Уравнение состояния газа в этом случае имеет вид:

. (2.37)

При заданной температуре состояние газа изображается точкой на плоскости, где по осям отложены давление и объем. Последовательность таких точек образует кривую, представляющую изотермический процесс. В случае изотермического процесса кривая является гиперболой и называется изотермой. Разным температурам газа соответствуют различные изотермы.

Вычислим работу, производимую газом при изотермическом процессе. Поскольку температура газа остается постоянной dT = 0, при термодинамическом процессе не изменяется внутренняя энергия газа, dE=0, т.е. все подводимое в систему тепло расходуется только на совершение механической работы dQ = PdV. Таким образом,

. (2.38)

При изотермическом сжатии газа механическая работа, совершаемая над системой, переходит в тепловую энергию окружающих тел.

2) Изобарический процесс.

Этот термодинамический процесс происходит при постоянном давлении. Ему соответствуют на диаграмме P,V горизонтальные прямые — изобары, определяемые уравнением состояния:

. (2.39)

Работа при изобарическом процессе пропорциональна разности объемов газа в начальном и конечном состояниях:

. (2.40)

3) Изохорический процесс.

Зависимость давления от температуры при постоянном объеме представляет собой в координатах P, V вертикальную прямую, называемую изохорой. Поскольку при этом процессе dV = 0, работа равна нулю.

4) Адиабатический процесс происходит в системе без теплообмена с окружающей средой, т. е. dQ = 0. Из первого начала термодинамики (2.32) следует, что при таком процессе dE = ‑ Pd V , т. е. изменение внутренней энергии системы происходит только за счет совершения работы. Выразим изменение внутренней энергии через теплоемкость при постоянном объеме согласно формуле (2.34): dE = v·CV·dT .Тогда

v·CV·dT = ‑ PdV. (2.41)

Отсюда следует, что при адиабатическом расширении газа dV > 0, dT < 0, и газ охлаждается. При сжатии газа, наоборот, происходит его нагревание и соответственно увеличение внутренней энергии.

Разделив выражение (2.41) соответственно на правую и левую части уравнения состояния v·R·T = P·V , интегрируя это соотношение, получим

 

Наконец, воспользовавшись связью между CP и CV в виде R = CP ‑ CV и вводя определенную ранее характерную для газа величину , получим окончательное соотношение между давлением и объемом идеального газа при адиабатическом процессе

. (2.42)

Полученное уравнение называется уравнением адиабаты. На плоскости P, V она изображается кривой, которая спадает более круто, чем изотерма (γ > 1).

Работа при адиабатическом процессе пропорциональна изменению температур газа в начальном и конечном состояниях:

. (2.43)

Все указанные процессы можно рассматривать как частные случаи общего более сложного процесса, при котором давление и объем связаны уравнением

. (2.44)

При n = 0 уравнение описывает изобару, при n = 1 — изотерму, при n = γ —адиабату та. при n = ∞ — изохору. Реальный неидеализированный процесс соответствует промежуточным значениям показателя степени в уравнении (2.44).

 

Задание температуры, давления и объема определяет состояние системы частиц (тела). Эти величины называются параметрами состояния.

Давление P, объем V и температура, T не являются независимыми величинами. Соотношение, связывающее эти три параметра, вида f(P, V, T) = 0 называется уравнением состояния. Найдем уравнение состояния идеального газа. Подставляя в соотношение (2.6) выражение (2.3), получим

PV = N·kБ·T. (2.7)

Отметим универсальный характер полученного уравнения: в него не входят никакие величины, характерные для определенного газа, а только числа частиц. Отсюда следует, в частности, что при одинаковых давлении и температуре разные газы, занимающие равные объемы, содержат в них равные числа молекул. Этот закон был установлен ранее опытным путем Авогадро. Перепишем уравнение состояния в терминах объема, приходящегося на единицу вещества — моль. Один моль — это количество вещества в граммах, численно равное его молекулярному весу. Например, 1 моль кислорода содержит 32 г вещества. Удобство этой единицы измерения состоит в том, что по определению в 1 моле любого вещества содержится одинаковое число молекул, называемое числом Авогадро NA . Оно равно 6·1023 молекул. Число молекул в объеме газа можно записать в виде: N = ν·NA,

где v — число молей данного вещества в указанном объеме. В этих обозначениях уравнение состояния принимает вид: PV=v·R·T. (2.8)

Величина R = kБNA называется газовой постоянной.Пусть при нагревании газа на 1 К объем, занимаемый 1 молем газа, изменился при неизменном давлении на ΔV . Представляя давление газа в виде P = F/S, а объем сосуда в виде ΔV = , видим, что величина PΔV = FΔh есть работа, произведенная газом при его расширении. Таким образом, физический смысл газовой постоянной состоит в том, что она численно равна работе, совершенной 1 молем газа при его нагревании на 1 К при постоянном давлении.

3. Определить напряженность в точках, указанных на рисунке: