рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Подземное оборудование ствола газовых скважин при добыче природного газа различного состава

Подземное оборудование ствола газовых скважин при добыче природного газа различного состава - раздел Образование, Эксплуатация нефтяных и газовых скважин При Эксплуатации Скважин Большое Внимание Должно Уделяться Надежности, Долгов...

При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите среды обитания. Условиям надежности, долговечности и безопасности работы должны удовлетворять как конструкция газовой скважины, так и оборудование ее ствола и забоя. Подземное оборудование ствола скважины позволяет осуществлять: 1) защиту скважины от открытого фонтанирования; 2) освоение, исследование и остановку скважины без задавки ее жидкостью; 3) воздействие на призабойную зону

Рис. 16.5. Схема компоновки подземного оборудования газовой скважины:

1 - пакер эксплуатационный; 2 - циркуляционный клапан; 3 - ниппель; 4 - забойный клапан-отсекатель с уравнительным клапаном; 5 - разобщитель колонны НКТ; 6 - ингибиторный клапан; 7 - клапан аварийный, срезной; 8 - НКТ; 9 - жидкий ингибитор коррозии и гидратообразования; 10 - хвостовик

 

пласта с целью интенсификации притока газа к скважине; 4) эксплуатацию скважины на установленном технологическом режиме; 5) замену колонны насосно-компрессорных (фонтанных) труб без задавки скважины жидкостью. Схема компоновки подземного оборудования скважины показана на рис. 16.5.

Для надежной эксплуатации газовых скважин используется следующее основное подземное оборудование: разобщитедь (пакер); колонна насосно-компрессорных труб (НКТ); ниппель; циркуляционный клапан; ингибиторный клапан; устройство для автоматического закрытия центрального канала скважины, которое включает в себя забойный клапан-отсекатель, уравнительный клапан, переводник и замок; клапан аварийный, срезной; разъединитель колонны НКТ; хвостовик. Дополнительное рабочее оборудование для работы с клапанами-отсекателями включает в себя: посадочный инструмент; ловители; шар с седлом для посадки пакера; приемный клапан; головку к скважинным приборам; грузы; гидравлический ясс; механический ясс; шлипсовый замок; груз для обрыва скребковой проволоки; двурогий крюк; уравнительную штангу; инструмент для управления циркуляционным клапаном.

Разобщитель (пакер) предназначен для постоянного разъединения пласта и затрубного пространства скважины с целью защиты эксплуатационной колонны и НКТ от воздействия высокого давления, высокой температуры и агрессивных компонентов (Н2S, СО2, кислот жирного ряда), входящих в состав пластового газа.

Колонна НКТ спускается в скважину для предохранения обсадной колонны от абразивного износа и высокого давления, для создания определенных скоростей газожидкостного потока и выработки газонасыщенного пласта снизу вверх.

Ниппель служит для установки, фиксирования и герметизации в нем забойного клапана-отсекателя. Он спускается в скважину на колонне НКТ и устанавливается обычно выше пакера.

Циркуляционный клапан обеспечивает временное сообщение центрального канала с затрубным пространством с целью осуществления различных технологических операций: освоения и задавки скважины, промывки забоя, затрубного пространства в колонны НКТ, обработки скважины различными химическими реагентами и т. д. Клапан устанавливается в колонне НКТ во время ее спуска в скважину и извлекается вместе с ней.

Ингибиторный клапан предназначен для временного сообщения затрубного пространства скважины с внутренним пространством колонны НКТ при подаче ингибитора коррозии или гидратообразования в колонну. Клапан устанавливается в колонне НКТ во время ее спуска и извлекается вместе с ней (КИМ-89В-350К).

Устройство для автоматического закрытия центрального канала скважины, предназначено для временного перекрытия скважины у нижнего конца колонны фонтанных труб при аварийных ситуациях или ремонте оборудования устья. Оно может устанавливаться в различных местах в НКТ.

Клапан аварийный срезной КАС168-140 предназначен для глушения (задавки) оборудованной пакером скважины в аварийной ситуации через затрубное пространство, когда нельзя открыть циркуляционный клапан типа КЦ при помощи проволочного приспособления. Устанавливается с колонной НКТ, входит в состав комплекта скважинного оборудования с диаметром эксплуатационной колонны 219 мм на давление 14 МПа (КО219/168-140).

Скважинное предохранительное оборудование газовых скважин состоит из двух отдельных узлов: 1) разобщителя (пакера); 2) собственно клапана-отсекателя. К пакерам, применяемым вместе с забойными клапанами-отсекателями, предъявляются высокие требования: 1) безотказность в работе; 2) надежность разобщения пласта от затрубного пространства; 3) возможность установки на любой заданной глубине; 4) малое время для соединения с колонной НКТ; 5) простота конструкции, минимально возможные основные размеры и металлоемкость; 6) устойчивость к агрессивным средам при высоких давлениях и температурах.

На рис. 11.6 изображен пакер типа НКР-1 фирмы «Камко» (США). Он имеет корпус, состоящий из верхней 8 и нижней 38 труб, соединенных между собой. Верхний и нижний концы корпуса заканчиваются переводниками 1 и 45. На наружной поверхности верхней трубы размещен уплотнительный элемент в сборе. Он состоит из резиновых манжет 17 и 18, фигурных колец 16, гильзы 19, упора 14 и сдвигающегося кольца 21. На наружной поверхности нижней трубы корпуса смонтирован шлипсовый узел, состоящий из упора 42 с втулкой 43, шлипсов 39 и толкателя 37. Между уплотнительным элементом и шлипсовым узлом имеется камера А, которую образует цилиндр 29 и соединенный с ним толкатель 37, поршень 27 со стаканом 34, связанным через втулку храпового механизма 26 кольцом 21 с корпусом пакера. В нее нагнетается жидкость при установке пакера в скважине. Для удержания пакера в рабочем (уплотненном и заякоренном) состоянии поршень 27 и цилиндр 29 снабжены храповыми механизмами 32 и 23, состоящими из четырех секторов и двух пружинных колец 22 и 31 каждый.

Рис. 11.6. Разобщитель (пакер) НКР-1 фирмы «Камко» (США)

Рис. 11.7. Пусковая пробка РЕ-500:

1 - корпус клапана; 2 - шар; 3 - седло; 4 - резиновое кольцо; 5 - срезные тарированные штифты

Рис. 11.8. Забойный прямоточный клапан-отсекатель ОЗП-73

 

Для освобождения пакера от обсадной колонны перед извлечением его из скважины предусмотрен механизм распакеровки, состоящий из разгрузочной муфты 7 с наружной и внутренней левыми резьбами. Внутренней резьбой разгрузочная муфта соединяется с верхним концом корпуса пакера, а наружной - через разгрузочный упор 9 и втулку 2 с колонной НКТ. Кроме того, разгрузочная муфта через корпус подшипника 12 соединена с упорным кольцом 33 уплотнительного элемента. Для облегчения вращения колонны НКТ при распакеровке служат подшипники 11, а для предотвращения проворачивания корпуса пакера при этом - пружины 40, прикрепленные к шлипсам винтами 41. В местах возможных утечек и перетоков жидкости в пакере установлены уплотнительные резиновые кольца 4, 10, 13, 15, 30, а резиновые соединения закреплены винтами 3, 25, 28, 36, 44. Для удержания подвижных деталей в статическом положении при спуске пакера в скважину, а также для предварительной опрессовки его (4 МПа) служат штифты 20 во втулке 24 и кольцо 35. После достижения пакером места посадки в скважине в колонну НКТ бросается шар 2 (рис. 16.7), который садится на седло 3 пусковой стационарной пробки РЕ-500, удерживаемое в корпусе клапана 1 (см. рис. 16.7) на срезных тарированных штифтах 5 на нижнем конце пакера. Седло уплотнено в корпусе резиновым кольцом 4.

В колонну НКТ под давлением нагнетают жидкость. Жидкость через отверстие в корпусе пакера поступает в камеру А (см. рис. 16.6). Под действием усилия, возникающего под давлением жидкости в камере, штифты 20 срезаются, поршень 27 и толкатель 37 перемещаются в противоположные стороны. При движении поршня 27 вверх усилие от него через втулку храпового механизма 26 передается на сдвигающееся кольцо 21. При этом резиновые манжеты 17, 18 деформируются и разобщают зоны затрубного пространства, расположенные выше и ниже пакера. При движении толкателя 37 вниз шлипсы 39 выдвигаются наружу, чем достигается заякоривание пакера в обсадной колонне. Когда давление в колонне НКТ достигает 23 - 27 МПа, срезные тарированные штифты а разрушаются и шар с седлом падают на забой, а храповые механизмы 23 и 32 фиксируют пакер в уплотненном и заякоренном состоянии в обсадной колонне.

Для освобождения пакера от обсадной колонны колонну НКТ вращают по часовой стрелке на 15 оборотов, одновременно поднимая ее. При этом прежде всего от приложенного момента вращения срезаются штифты 5, затем при первых четырех оборотах разгрузочный упор 9 сворачивается с разгрузочной муфты 7 до упора с вращающейся муфтой 6. При этом отверстие во втулке 2 оказывается выше конца верхней трубы 8, и центральный канал пакера сообщается с затрубным пространством. Через него закачкой жидкости в затрубное пространство промывается надпакерная зона затрубного пространства от возможных накоплений механических примесей перед срывом пакера с места установки. При дальнейшем повороте загрузочная муфта 7 сворачивается с верхней трубы 8, которая последовательно перемещает за собой вверх корпус подшипника 12, упор подшипника 14, гильзу 19, сдвигающееся кольцо 21, втулку храпового механизма 26, поршень 27.

Поршень увлекает за собой цилиндр 29 и толкатель 37, при этом как уплотнительные элементы 17 и 18, так и шлипсы 39 освобождаются от торцевых упоров и принимают первоначальные диаметральные размеры. В этом состоянии пакер можно извлечь из скважины.

Забойные клапаны-отсекатели предотвращают открытое фонтанирование при повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.

На рис. 16.8 изображен клапан-отсекатель типа ОЗП-73. Отсе-катель забойный прямоточный (ОЗП) состоит из корпуса 6, к нижнему концу которого присоединен клапанный узел, имеющий седло 10, заслонку 14, пружину 12, ось 13 и кожух 15. К верхнему концу кожуха присоединен переводник 1, имеющий упор а. В центральном канале устройства помещен подвижный патрубок 4 со сменным штуцером 11. Подвижный патрубок 4 имеет наружную проточку. Между подвижным патрубком 4 и корпусом 6 установлено фиксирующее устройство, состоящее из пружины 5, цанги 7 и регулировочной гайки 3. Лепестки в цанге взаимодействуют с проточкой подвижного патрубка 4 и кольцевым выступом в корпуса 6. Кольца 2, 8 и 9 уплотняют поверхности сопрягаемых деталей. Устройство работает следующим образом. Перед спуском отсека-теля в скважину, исходя из рассчитанного дебита, устанавливают сменный штуцер 11 и гайкой 3 регулируют пружину 5 на определенное усилие. К переводнику 1 присоединяют уравнительный клапан и замок; сборку спускают в скважину и устанавливают в ниппеле.

Во время нормальной работы скважины газ или жидкость из пласта, проходя через центральный клапан устройства, поднимается на поверхность по колонне НКТ. При прохождении газа через штуцер 11 создается перепад давления, усилие от которого перемещает штуцер 11 с подвижным патрубком 4 в крайнее верхнее положение, но усилие пружины 5 фиксируемого устройства препятствует этому, в результате заслонка 14 остается открытой. Увеличение расхода газа через штуцер приводит к возрастанию перепада давления на нем. Когда усилие, вызванное перепадом давления, превысит усилие пружины 5, подвижный патрубок 4, отжимая пружину, начинает перемещаться вверх. После перемещения подвижного патрубка на 3 - 5 мм цанга 7 отходит от выступа в корпуса 6 и, выходя из взаимодействия с проточкой, освобождает подвижный патрубок 4 от действия пружины 5. Подвижный патрубок мгновенно перемещается до упора а переводника /. В этот момент под действием пружины 12 заслонка 14 перекрывает центральный канал устройства.

Клапан-отсекатель открывается следующим образом. В колонну НКТ на скребковой проволоке спускают уравнительную штангу, которая открывает уравнительный клапан. При этом нижний конец ее упирается в подвижный патрубок 4. После выравнивания давлений над и под заслонкой 14 подвижный патрубок 4 со сменным штуцером // под действием веса уравнительной штанги перемещается в крайнее нижнее положение. В результате заслонка устанавливается в положение «открыто». Лепестки цанги 7, взаимодействуя с кольцевым выступом корпуса 6 и проточкой б подвижного патрубка 4, фиксируют последний в рабочем положении.

Клапан-отсекатель ОЗП-73 имеет следующие преимущества: 1) седло и заслонка клапана находятся вне действия потока газа, не подвергаются абразивному износу; 2) отсутствует мертвая зона, влияющая на надежность работы отсекателя в скважинах, имеющих в потоке газа твердые взвеси; 3) небольшая длина отсекателя, благодаря тому что пружина фиксирующего устройства при наличии цанги имеет жесткую характеристику: 4) четкость срабатывания на закрытие, так как пружина сжимается только на 3 - 5 мм и перестает действовать на подвижную трубу, тогда как в других конструкциях усилие пружины постоянно воздействует на подвижный элемент устройства.

Саратовский филиал СКВ ВНПО «Союзгазавтоматика» разработал конструкцию клапана-отсекателя К-168-140, входящего в комплект скважинного оборудования с диаметром эксплуатационной колонны 219 мм на давление 14 МЛа (КО-219/168-140).

Пластовые газы многих газоконденсатных месторождений России имеют в своем составе коррозионные компоненты: сероводород, углекислый газ, кислоты жирного ряда (муравьиную, пропионовую, щавелевую, масляную). Так, например, пластовый газ Астраханского месторождения имеет следующий объемный состав, %: сероводород 26,5, углекислый газ 11; месторождения Урта-Булак - 5,35 и 3,15; Оренбургского - 1,3 - 5 и 0,5 - 1,75 соответственно.

Коррозионные компоненты при наличии пластовой минерализованной или конденсационной воды, высоких давлений и темпера тур вызывают интенсивную коррозию металлических обсадных колонн, НКТ, оборудования устья скважин, шлейфов, поверхностного оборудования промыслов.

При большом содержании сероводорода в газе невозможно использовать обычные скважинные приборы для измерения давлений и температур, проводить геофизические работы в скважинах. Наибольшей коррозии подвергаются тройники, крестовины, катушки, уплотнительные кольца фланцевых соединений, задвижки фонтанной арматуры. Интенсивность коррозии элементов оборудования устья скважин изменяется от 0,1 до 4 мм в год.

 

Рис. 16.9. Схема компоновки подземного оборудования скважин

на Оренбургском газоконденсатном месторождении:

1 - хвостовик диаметром 127 или 114 мм и длиной 100 - 380 м; 2 - пакерное устройство

с минимальным диаметром проходного сечения 57 мм; 3 - клапан-отсекатель с проходным

сечением 33,4 мм; 4 - циркулярный клапан типа «скользящая втулка» с внутренним

диаметром 73 мм; 5 - НКТ диаметром 127 или 114 мм

 

Срок службы колонн НКТ до обрыва в верхней части и падения на забой скважины на месторождениях Краснодарского края составляет 1 - 18 мес, нарушение герметичности задвижек фонтанной арматуры происходит в течение 1 - 2 мес, фланцевых соединений - в течение 4 - 6 мес.

На рис. 16.9 изображена схема компоновки скважинного оборудования на Оренбургском газоконденсатном месторождении. В добывающие скважины спускается скважинное оборудование фирмы «Камко» (США), включающее: хвостовик диаметром 127 или 114 мм, длиной 100 - 380 м, предназначенный для улучшения условий освоения и эксплуатации вскрытой продуктивной толщины пласта; пакерное устройство с диаметром проходного сечения 57 мм для разобщения затрубного пространства от внутренней полости НКТ с целью предохранения эксплуатационной колонны от воздействия коррозионно-активных компонентов в добываемом газе; клапан-отсекатель с диаметром проходного сечения 33,4 мм в пакерном устройстве для предотвращения чрезмерного увеличения дебита скважины; циркуляционный клапан с внутренним диаметром 73 мм типа «скользящая втулка» для сообщения трубного пространства с затрубным; НКТ диаметром 127 или 114 мм.

Защита внутренней поверхности металлической обсадной колонны и внешней поверхности НКТ осуществляется разобщением пласта и затрубного пространства скважины при помощи разобщителя (пакера) и заполнением затрубного пространства ингибированной жидкостью. Защита другого металлического оборудования скважины от коррозии осуществляется при помощи периодической закачки ингибитора коррозии в призабойную зону пласта или непрерывной его закачки в затрубное пространство скважины с помощью насосов и подачи ингибитора в НКТ из затрубного пространства скважины через специальные ингибиторные клапаны в колонне НКТ.

Для защиты от коррозии внешней поверхности хвостовика, направленного воздействия соляной кислотой на карбонатные породы открытого забоя скважины, получения более точных данных по геофизическим исследованиям скважин на Оренбургском газоконденсатном месторождении усложнили конструкцию хвостовика, изменили узел разобщения призабойной зоны пласта от затрубного пространства.

Хвостовики скв. 196, 743, 775 оборудовали подпакерным циркуляционным клапаном, струйными клапанами, ниппелем для установки скважинкой пробки.

Для проведения дебитометрии, поинтервального замера пластовых давлений, отбора проб в колонне обсадных труб в призабойной зоне скважины в Тюменниигипрогазе разработали конструкцию подвижного хвостовика. В процессе эксплуатации скважины хвостовик находится в крайнем нижнем положении. Продукция скважины движется через хвостовик и НКТ на устье. При проведении исследований в процессе работы скважины в нее через лубрикатор на каротажном кабеле или канате спускается специальное подъемное устройство, которое зацепляет хвостовик в нижней его части. Хвостовик поднимается вверх, при этом на поверхности следят за нагрузкой по индикатору массы. Захватывающее устройство поднимается на поверхность. В освобожденной от хвостовика зоне перфорации проводят указанные исследования. После проведения необходимого комплекса исследований хвостовик с помощью специального устройства вновь опускается вниз в свое рабочее положение.

В качестве ингибиторов коррозии используются кубовый остаток разгонки масляного слоя, получаемого при синтезе 2-метил, 5-этилпиридинаг имеющий промышленное название И-1-А, смесь аминокислоты и полиамина жирного ряда с длинной цепью, имеющая название РА-23, и многие другие: катапин БПВ, КИ-1, КПИ-1, ПБ-5, БА-6, «Виско», ИФХАНгаз, Донбасс-1, И-25-Д.

На некоторых месторождениях с высокими пластовыми давлениями и низкими температурами используются комплексные ингибиторы коррозии и гидратообразования типа КИГИК.

В последние годы стали изготовляться высокогерметичные коррозионностойкие насосно-компрессорные трубы НКТ-114 из сталей марок 18X1ГМФА, 18Х1Г1МФ группы прочности К, размером 114 х 7 мм для оборудования скважин на месторождениях, содержащих сероводород. Они выдерживают давление до 50 МПа. Впервые колонна НКТ из труб НКТ-114 была спущена в скв. 234 Оренбургского газоконденсатного месторождения. 76

Для предотвращения растепления многолетнемерзлых пород на месторождениях Севера используются двухстенные трубы с высокоэффективной теплоизоляцией между ними. ВНИИГаз разработал насосно-компрессорные теплоизолированные трубы модели ЛТТ-168 X 73, состоящей из внешней несущей трубы 168 X ПД и внутренней трубы 73 х 5,5Д. Между стенками труб диаметрами 168 и 73 мм может помещаться теплоизоляция любого типа с коэффициентами теплопроводности до 0,01163 Вт/(м-К). Трубы ЛТТ-168 X 73 использованы в конструкции скв. 110 Южно-Соленинского месторождения.

Особое конструкторское бюро по проектированию нефтегазодобывающих машин и оборудования (ОКБ НЕФТЕМАШ, г. Баку) разработало комплексы оборудования для эксплуатации газовых скважин типов КПГ (комплекс подземный для газовых скважин) и КСГ (комплекс скважинный для газовых скважин), которые с 1982 г. серийно выпускаются заводами ВПО «Союзнефтемаш».

– Конец работы –

Эта тема принадлежит разделу:

Эксплуатация нефтяных и газовых скважин

Эксплуатация нефтяных и газовых скважин Курс... ВВЕДЕНИЕ Нефть и газ являются одними из основных видов топлива потребляемого человечеством Нефть добывают и используют сравнительно давно однако начало...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Подземное оборудование ствола газовых скважин при добыче природного газа различного состава

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Курс лекций
  Томск 2009   Эксплуатация нефтяных и газовых скважин ВВЕДЕНИЕ 1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ 1.1. Понятие о нефтяной залеж

Понятие о нефтяной залежи
Нефтяная залежь представляет собой скопление жидких углеводородов в некоторой области земной коры, обусловленное причинами геологического характера. Часто нефтяная залежь имеет контакт с водяным пл

Механизм использования пластовой энергии при добыче нефти
Жидкость из пласта в скважину поступает под действием перепада давления между пластом и забоем скважины. Поэтому пластовое давление - основной фактор, определяющий текущее энергетическое состояние

Среднее пластовое давление
По среднему пластовому давлению оценивают общее состояние пласта и его энергетическую характеристику, обусловливающую способы и возможности эксплуатации скважин. Статические давления в скважинах, р

Приведенное давление
Для объективной оценки забойных давлений и возможности их сравнения вводится понятие приведенного давления. Измеренные или вычисленные забойные давления приводятся (пересчитываются) к условной гори

Приток жидкости к скважине
Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно

Режимы разработки нефтяных месторождений
Фильтрация жидкости по пласту к забоям скважин - к точкам наиболее низкого давления осуществляется за счет пластовой энергии. Жидкость под действием пластового давления находится в сжатом состоянии

Водонапорный режим
При этом режиме фильтрация нефти происходит под действием давления краевых или законтурных вод, имеющих регулярное питание (пополнение) с поверхности за счет талых или дождевых вод или за счет непр

Упругий режим
При этом режиме вытеснение нефти происходит под действием упругого расширения самой нефти, окружающей нефтяную залежь воды и скелета пласта. Обязательным условием существования этого режима (как и

Режим газовой шапки
Этот режим проявляется в таких геологических условиях, при которых источником пластовой энергии является упругость газа, сосредоточенного в газовой шапке. Для этого необходимо, чтобы залежь была из

Режим растворенного газа
Дренирование залежи нефти с непрерывным выделением из нефти газа и переходом его в свободное состояние, увеличением за счет этого объема газонефтяной смеси и фильтрации этой uaie к точкам пониженно

Гравитационный режим
Гравитационным режимом дренирования залежей нефти называют такой режим, при котором фильтрация жидкости к забоям скважин происходит при наличии «свободной поверхности». Свободной поверхностью назыв

Цели и методы воздействия
Целями воздействия на залежь нефти являются поддержание пластового давления и, что более важно, увеличение конечной нефтеотдачи. В последнем случае методы воздействия могут быть иными, и они часто

Размещение скважин
Законтурное заводнение. Воздействие на пласт в этом случае осуществляется через систему нагнетательных скважин, расположенных за внешним контуром нефтеносности. Линия нагнетательных скважин

Основные характеристики поддержания пластового давления закачкой воды
Техника и технология ППД закачкой воды связана с некоторыми понятиями и определениями, которые характеризуют процесс, его масштабы, степень компенсации отборов закачкой, сроки выработки запасов, чи

Водоснабжение систем ППД
Основное назначение системы водоснабжения при поддержании пластового давления - добыть нужное количество воды, пригодной для закачки в пласт, распределить ее между нагнетательными скважинами и зака

Водозаборы
Водозаборы открытых водоемов обычного типа, применяемые в коммунальном хозяйстве, - самые простые водозаборы. Существенный технологический недостаток открытых водозаборов, сооружаемых в реках, - эт

Буферные емкости
Они необходимы для обеспечения резерва воды обычно для шестичасовой непрерывной работы при прекращении подачи воды со станции первого подъема. Предполагается, что за 6 ч можно устранить причины (по

Станции второго подъема
Насосные станции второго подъема осуществляют распределение воды по магистральным водоводам и снабжение ею непосредственно КНС. Располагаются они, как правило, в местах сосредоточения основных соор

Оборудование кустовых насосных станций
Кустовые насосные станции оборудуются насосами различных типов: АЯП, 5МС7Х10; 6МС7Х10 и др. В последнее время разработаны центробежные насосы специально для поддержания пластового давления. Некотор

Основные характеристики БКНС
Блок Шифр блока Масса с оборудова-нием, т Размеры, м Число блоков при числе насосов

Технология и техника использования глубинных вод для ППД
Использование вод глубинных водоносных пластов, залегающих выше или ниже нефтеносного пласта, для поддержания давления известно давно. Вначале такое использование сводилось к одновременному вскрыти

Характеристика погружных установок, спускаемых на кабеле-канате
Марка Подача, м3/сут Напор, м УЭЦНБ5А-160-1100 УЭЦНБ5А-250

Характеристика погружных высокопроизводительных насосов для ППД
Показатели УЭЦН-16-3000-1000 УЭЦН-16-2000-1400 Подача (номинальная), м3/сут

Поддержание пластового давления закачкой газа
В продуктивных коллекторах, в составе которых присутствует много глинистого материала, разбухающего при его смачивании пресной водой, закачка воды для ППД, как правило, неэффективна. Нагнетательные

Методы теплового воздействия на пласт
Эти методы являются перспективными для добычи высоковязких нефтей и нефтей с неньютоновскими свойствами. Однако существуют месторождения с такими условиями залегания и свойствами нефти, при которых

Техника закачки теплоносителя в пласт
Приготовление горячих теплоносителей для закачки их в пласт может осуществляться как на поверхности, так и на забое нагнетательной скважины. В первом случае (паровые или водогрейные котлы или разли

Внутрипластовое горение
Создание подвижного фронта горения непосредственно в пласте сокращает потери теплоты и поднимает эффективность теплового воздействия. В пористой среде, насыщенной частично коксоподобными остатками

ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
Пробуренные нефтедобывающие скважины обычно эксплуатируются несколько десятков лет. В течение этого времени месторождение проходит различные стадии разработки - от начальной, когда добывается безво

Конструкция оборудования забоев скважин
В любом случае конструкция забоя скважины должна обеспечивать: § механическую устойчивость призабойной части пласта, доступ к забою скважин спускаемого оборудования, предотвращение обрушен

Приток жидкости к перфорированной скважине
При фильтрации жидкости, подчиняющейся линейному закону, приток жидкости к скважине можно выразить следующим образом: , (4.1)

Техника перфорации скважин
Существует четыре способа перфорации: пулевая, торпедная, кумулятивная, пескоструйная. Первые три способа перфорации осуществляются на промыслах геофизическими партиями с помощью оборудова

Пескоструйная перфорация
При гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок

Характеристика насосного агрегата 4АН-700
Скорость Частота вращения, 1/мин Теоретическая подача, л/с, при втулках Давление, МПа 100 мм 12

Методы освоения нефтяных скважин
Освоение скважины - комплекс технологических операций по вызову притока и обеспечению ее продуктивности, соответствующей локальным возможностям пласта. После проводки скважины, вскрытия пласта и пе

Освоение нагнетательных скважин
Если целью освоения эксплуатационной скважины является получение возможно большего коэффициента продуктивности при данных параметрах пласта, то цель освоения нагнетательной скважины - получение воз

Назначение методов и их общая характеристика
Извлечение нефти из пласта и любое воздействие на него осуществляются через скважины. Призабойная зона скважины (ПЗС) - область, в которой все процессы протекают наиболее интенсивно. Здесь как в ед

Обработка скважин соляной кислотой
Обработка скважин соляной кислотой нашла наиболее широкое распространение вследствие своей сравнительной простоты, дешевизны и часто встречающихся благоприятных для ее применения пластовых условий.

Термокислотные обработки
Этот вид воздействия на ПЗС заключается в обработке забоя скважины горячей кислотой, нагрев которой происходит в результате экзотермической реакции соляной кислоты с магнием или некоторыми его спла

Поинтервальная или ступенчатая СКО
При вскрытии нескольких самостоятельных прослоев общим фильтром или общим открытым забоем, а также при вскрытии пласта большой толщины, в разрезе которого имеются интервалы с различной проницаемост

Кислотные обработки терригенных коллекторов
Особенность СКО терригенных (песчаники, алевролиты и др.) коллекторов заключается в том, что кислота в них не формирует отдельные каналы, проникающие в пласт на различную глубину, как в карбонатных

Техника и технология кислотных обработок скважин
На обустроенных нефтяных промыслах, на которых проектируются кислотные обработки скважин (СКО), как правило, сооружаются кислотные базы с соответствующими подъездными путями (включая железнодорожну

Гидравлический разрыв пласта
Сущность этого процесса заключается в нагнетании в проницаемый пласт жидкости при давлении, под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещ

Осуществление гидравлического разрыва
Осуществление ГРП рекомендуется в следующих скважинах. 1. Давших при опробовании слабый приток. 2. С высоким пластовым давлением, но с низкой проницаемостью коллектора. 3

Оценка размеров горизонтальных трещин
Площади трещины, м2 Эквивалент- ный радиус, м Объем трещины, м3 , при ширине 2 см 1 см

Значения коэффициентов N(b) и n(b)
b n (b) N (b) 17,0 0,44 0,15 22,72 0,55 0,106

Техника для гидроразрыва пласта
Гидроразрыв пласта всегда предпочтительно делать через обсадную колонну, если ее состояние, герметичность и прочность позволяют создать на забое скважины необходимые давления (Pр). Потери

Тепловая обработка призабойной зоны скважины
Тепловая обработка призабойной зоны скважины (ПЗС) целесообразна при добыче тяжелых вязких нефтей или нефтей с высоким содержанием парафина и асфальтосмолистых компонентов (более 5 - 6%). Поскольку

Термогазохимическое воздействие на призабойную зону скважины
Термогазохимическое воздействие на призабойную зону скважины (ТГХВ) заключается в сжигании на забое скважины порохового заряда, спускаемого на электрокабеле. Время его сгорания регулируется н может

Другие методы воздействия на призабойную зону скважин
Кроме описанных основных методов воздействия на ПЗС существуют другие менее распространенные вследствие своей низкой эффективности либо проходящие промышленные испытания и находящиеся в стадии изуч

Назначение и методы исследования скважин
Существует много методов исследования скважин н технических средств для их осуществления. Все они предназначены для получения информации об объекте разработки, об условиях и интенсивности притока н

Исследование скважин при установившихся режимах
В главе 2 была получена формула (2.10) радиального притока жидкости к скважине , (6.1) Если e = e(r), то

Исследование скважин при неустановившихся режимах
Если давление на забое Рс, а тем более пластовое Рк превышает давление насыщения Рнас, то предполагается, что перераспределение давления в пласте после любых возмущений происходит по законам упруго

Термодинамические исследования скважин
Известно, что колебания температуры на земной поверхности вызывают изменения температуры на малой глубине. Суточные колебания температуры затухают на глубине менее метра и годовые - на глубине прим

Скважинные дебитометрические исследования
При добыче нефти очень редко приходится эксплуатировать однородные, монолитные, насыщенные нефтью пласты. Обычно на забое скважины имеются несколько перфорированных интервалов, соответствующих отде

Техника и приборы для гидродинамических исследований скважин
Приборы спускают в скважины без остановки их работы. Поскольку доступ к забою через НКТ возможен в фонтанных и газлифтных скважинах, на устьях которых всегда имеется давление, иногда очень значител

Зависимость подачи жидкости от расхода газа
Качественную характеристику процесса движения газожидкостной смеси (ГЖС) в вертикальной трубе легче уяснить из следующего простого опыта (рис. 7.1). Представим, что трубка 1 длиною L погружена под

Зависимость положения кривых q (V) от погружения
Поскольку при наших рассуждениях никаких ограничений на величину e не накладывалось, то при любых e, лежащих в пределах 0 < e < 1, вид соответствующих кривых q(V) будет одинаковый. При увелич

Зависимость положения кривых q(V) от диаметра трубы
В наших рассуждениях никаких ограничений на диаметр подъемной трубы и на ее длину не накладывается. Поэтому аналогичное семейство кривых q(V) должно существовать для подъемников любого диаметра и л

К. п. д. процесса движения ГЖС
На каждой кривой q(V) имеется еще одна характерная и очень важная точка, точка так называемой оптимальной производительности, соответствующая наибольшему к. п. д. Если проанализировать произвольную

Зависимость оптимальной и максимальной подач от относительного погружения
Для любого семейства кривых q(V), построенного для данного диаметра труб, можно найти qmax и qопт и проследить их зависимость от изменения относительного погружения ε. С увеличением ε вел

Структура потока ГЖС в вертикальной трубе
В зависимости от физических свойств жидкости и характера ввода газа в поток могут возникать различные структуры движения ГЖС в трубе, которые существенным образом влияют на энергетические показател

Уравнение баланса давлений
При проектировании или анализе работы установок для подъема жидкости из скважин, когда по НКТ движется ГЖС, основным вопросом является определение потерь давления, связанных с этим движением. Рассм

Плотность газожидкостной смеси
Через данное сечение трубы при движении по ней ГЖС проходит некоторое количество газа и жидкости. Можно представить, что все газовые пузырьки занимают в сечении трубы суммарную площадь fг, а жидкос

Формулы перехода
В литературе по вопросам движения ГЖС для вычисления рс различные авторы используют различные выражения и различные подходы к определению этой важной величины. Покажем, что все возможное разнообраз

ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
  Фонтанирование скважин обычно происходит на вновь открытых месторождениях нефти, когда запас пластовой энергии велик, т. е. давление на забоях скважин достаточно большое, чтобы прео

Артезианское фонтанирование
Теоретическое описание процесса артезианского фонтанирования практически не отличается от расчета движения однородной жидкости по трубе. Давление на забое скважины Рс при фонтанировании

Фонтанирование за счет энергии газа
Это наиболее распространенный способ фонтанирования нефтяных скважин. Уже было отмечено, что при артезианском фонтанировании в фонтанных трубах движется негазированная жидкость (нефть), поэтому, чт

Условие фонтанирования
Фонтанирование возможно лишь в том случае, если энергия, приносимая на забой жидкостью, равна или больше энергии, необходимой для подъема этой жидкости на поверхность при условии, что фонтанный под

Расчет фонтанного подъемника
Дебиты фонтанных скважин изменяются в широких пределах как по количеству жидкости, так и по количеству попутного газа. С одной стороны, известны фонтанные скважины, дающие более 1000 м3/

Расчет процесса фонтанирования с помощью кривых распределения давления
Умение рассчитывать при любых заданных условиях кривую распределения давления вдоль НКТ при движении по ним газожидкостной смеси позволяет по-новому подойти к расчету процесса фонтанирования, выбор

Оборудование фонтанных скважин
Геологические условия нефтяных и газовых месторождений, из которых добываются нефть и газ, различны. Они отличаются глубиной залегания продуктивного пласта, характеристикой и устойчивостью проходим

Колонная головка
Она предназначена для обвязки устья скважины с целью герметизации межтрубных пространств, а также для подвески обсадных колонн и установки фонтанной арматуры. Существуют одно-, двух-, трех-, четыре

Фонтанная арматура
Фонтанная арматура предназначена для подвески одной или двух колонн фонтанных труб; для герметизации и контроля пространства между фонтанными трубами и обсадной колонной; для проведения технологиче

Штуцеры.
Они являются элементом фонтанной елки и предназначены для регулирования режима работы фонтанной скважины и ее дебита. Штуцеры устанавливаются на обеих выкидных линиях арматуры и подразделяются на н

Манифольды
Манифольд предназначен для обвязки фонтанной арматуры с трубопроводом, подающим продукцию скважины на замерную установку. Применяются различные схемы таких обвязок в зависимости от местных условий

Регулирование работы фонтанных скважин
Как правило, на начальных этапах разработки фонтанные скважины и особенно высокодебитные определяют возможности нефтедобывающего предприятия. Поэтому их исследованию, регулированию и наблюдению за

Открытое фонтанирование
При добыче нефти и газа известно очень много случаев открытого фонтанирования и грандиозных продолжительных пожаров фонтанных скважин, приводящих к преждевременному истощению месторождения и образо

Предупреждение отложений парафина
Известно, что нефть есть сложная смесь различных углеводородов, как легких, так и тяжелых, находящихся в термодинамическом равновесии при пластовых условиях. Добыча нефти сопровождается неизбежным

Отложение солей
Отложение солей на стенках НКТ подземного оборудования и даже в призабойной зоне наблюдается на некоторых месторождениях нефти при закачке в пласт пресной воды для ППД. Основным наполнител

Общие принципы газлифтной эксплуатации
Газлифтная скважина - это по существу та же фонтанная скважина, в которой недостающий для необходимого разгазирования жидкости газ подводится с поверхности по специальному каналу (рис. 9.1). По кол

Конструкции газлифтных подъемников
Два канала, необходимых для работы газлифтной скважины в реальных условиях, создаются двумя рядами концентрично расположенных труб, т. е. спуском в скважину первого (внешнего) и второго (внутреннег

Пуск газлифтной скважины в эксплуатацию (пусковое давление)
Эксплуатация скважин не протекает бесперебойно. По различным причинам их приходится останавливать для ремонта и вновь пускать в эксплуатацию. Пуск газлифтных скважин имеет некоторые особенности, св

Последовательный допуск труб
Башмак подъемных труб в этом случае спускается под статический уровень не на проектную глубину, а на такую, при которой можно продавить скважину имеющимся давлением Рк (давление ко

Применение пусковых отверстий
На колонне лифтовых труб ниже статического уровня заблаговременно сверлятся так называемые пусковые отверстия. При закачке газа в межтрубное пространство опускающийся уровень жидкости обнажает перв

Газлифтные клапаны
Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается свя

Принципы размещения клапанов
Пусковые клапаны должны обладать большим закрывающим перепадом давлений, чтобы закрыться тогда, когда оттесняемый уровень жидкости достигнет следующего клапана и даст доступ газу через второй клапа

Принципы расчета режима работы газлифта
Определение параметров режима работы газлифтной скважины основано на использовании кривых распределения давления при движении ГЖС в трубе. Важнейшими величинами, подлежащими определению, являются у

Оборудование газлифтных скважин
Арматура, устанавливаемая на устье газлифтных скважин, аналогичная фонтанной арматуре и имеет то же назначение - герметизацию устья, подвеску подъемных труб и возможность осуществления различных оп

Системы газоснабжения и газораспределения
Технически правильно организованная система газлифтной эксплуатации обязательно должна предусматривать использование отработанного в газлифтных скважинах газа низкого давления или так называемый за

Периодический газлифт
Обычно разработка нефтяного месторождения сопровождается снижением пластового давления. Для эффективной работы газлифта необходимо иметь относительное погружение ε = 0,5 - 0,6. При падении пла

Исследование газлифтных скважин
Исследование газлифтных скважин необходимо для: § установления режима работы скважины с минимальным расходом нагнетаемого газа; § снятия индикаторной линии или определения уравнен

Подача штангового скважинного насоса и коэффициент подачи
При перемещении плунжера вверх на величину его хода Sn вытесняется объем жидкости где F - площадь сечения плунжера (или ц

Влияние газа
Влияние газа в откачиваемой жидкости учитывается коэффициентом наполнения цилиндра насоса. Он равен отношению объема жидкости Vж, поступившей в насос, ко всему объему смеси Vcм, состоящему из объем

Влияние потери хода плунжера
Поскольку теоретическая подача насоса определяется длиной хода точки подвеса штанг S, то всякое уменьшение действительного хода плунжера по сравнению с S непосредственно влияет на фактическую подач

Влияние утечек
Рассмотрим утечки через зазор между плунжером и цилиндром насоса. Утечки в клапанах возникают, как правило, в изношенном насосе и отсутствуют в нормально работающем. Они приводят к перетеканию жидк

Влияние усадки жидкости
Через ШСН проходит некоторый объем нефти и воды при давлении и температуре на приеме насоса. Когда продукция попадает в товарный парк, она дегазируется и охлаждается. Это учитывается объемными коэф

Нагрузки, действующие на штанги, и их влияние на ход плунжера
Динамика работы установки ШСН очень сложна. Однако в большинстве случаев упрощенная теория ее работы дает вполне приемлемые результаты. При ходе вверх статические нагрузки в точке подвеса штанг скл

Влияние статических нагрузок
Сила Рж действует попеременно то на штанги (ход вверх), то на трубы (ход вниз). В результате этого при ходе вверх штанги дополнительно растягиваются на величину λш, которая может быть определе

Штанговые скважинные насосы
Насосы разделяются на невставные или трубные и вставные. Основные особенности их состоят в следующем. Невставные насосы. Цилиндр спускается в скважину на насосных трубах б

Характеристики штанг и муфт
Штанги Муфты соединительные Масса, кг Масса колонны в воздухе, кг/м Площадь сечения штанги, см2

Прочностные характеристики штанг и условия их использования
Сталь Термообработка Условия работы в скважине Нормализация Для легких условий эксплуатации:

Основные показатели групп прочности стали труб
Показатели Д К E Л М Временное сопротивление σв, МПа

Характеристики насосно-компрессорных труб
Условный диаметр, мм Толщина стенки, мм Внутренний диаметр, мм НКТ гладкие НКТ равнопрочные Стр

Оборудование устья скважины
Устьевое оборудование штанговой насосной скважины предназначено для герметизации затрубного пространства и отвода продукции скважины. В связи с широким распространением однотрубной системы

Канатная подвеска
Сальниковый шток присоединяется к головке балансира с помощью канатной подвески. Конструкция канатной подвески допускает установку прибора - динамографа для снятия диаграммы - зависимости силы, дей

Штанговращатель
Штанговращатель - механическое приспособление, закрепляемое на сальниковом штоке для медленного проворачивания колонны штанг и плунжера «на заворот» при каждом ходе головки балансира. Штан

Станки-качалки (СК)
На нефтяных промыслах в эксплуатации имеются СК различных типоразмеров и конструкций. В настоящее время СК выпускаются по ГОСТ 5866 - 76. В механическом и кинематическом отношении они достаточно со

Исследование скважин, оборудованных штанговыми насосными установками
Исследование ШСНУ необходимо для изучения притока и построения индикаторной кривой, а также для изучения работы самого насоса и выявления причин низкого коэффициента подачи. Изменение отбо

Динамометрия ШСНУ
Снятие диаграммы нагрузки на полированный шток в зависимости от хода называется динамометрией ШСНУ. Она осуществляется силоизмерительным регистрирующим прибором - динамометром. Сопоставлен

Динамограмма и ее интерпретация
Теоретическая динамограмма показана на рис. 10.13. На нее наложена (показана пунктиром) типичная фактическая динамо-грамма исправного насоса, спущенного на небольшую глубину и работающего в условия

Эксплуатация скважин штанговыми насосами в осложненных условиях
При работе штанговых насосных установок часто встречаются особые условия, осложняющие работу этих установок. К ним следует отнести: большое газосодержание на приеме насоса; большое содержание песка

Погружной насосный агрегат
Насосный агрегат состоит из насоса (рис. 11.3, а), узла гидрозащиты (рис. 11.3, 6), погружного электродвигателя ПЭД (рис. 11.3, в), компенсатора (рис. 11.3, г), присоединяемого к нижней части ПЭДа.

Элементы электрооборудования установки
ПЭД питается электроэнергией по трехжильному кабелю, спускаемому в скважину параллельно с НКТ. Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работ

Характеристика кабелей, применяемых для УПЦЭН
Кабель Число жил и площадь сечения, мм2 Наружный диаметр, мм Наружные размеры плоской части, мм Масса, кг/км

Установка ПЦЭН специального назначения
Погружные центробежные насосы применяются не только для эксплуатации добывающих скважин. Они находят применение. 1. В водозаборных и артезианских скважинах для снабжения технической водой

Определение глубины подвески ПЦЭН
Глубина подвески насоса определяется: 1) глубиной динамического уровня жидкости в скважине Нд при отборе заданного количества жидкости; 2) глубиной погружения ПЦЭН под

Определение глубины подвески ПЦЭН c помощью кривых распределения давления
Глубина подвески насоса и условия работы ЭЦЭН как на приеме, так и на его выкиде довольно просто определяется с помощью кривых распределения давления вдоль ствола скважины и НКТ. Предполагается, чт

Принцип действия гидропоршневого насоса
Гидропоршневые насосы (ГПН) состоят из двух основных частей: гидравлического поршневого двигателя объемного типа D (рис. 12.1) и соединенного с двигателем общим штоком поршневого насоса двухсторонн

Подача ГПН и рабочее давление
Рассмотрим работу ГПН двойного действия, так как такие агрегаты являются наиболее современными. Обозначим: Рн - площадь поршня насоса, откачивающего пластовую жидкость; f - площадь сечения штока; S

ПОГРУЖНЫЕ ВИНТОВЫЕ НАСОСЫ
Основным элементом погружного винтового насоса (ПВН) является червячный винт, вращающийся в резиновой обойме специального профиля. В пределах каждого шага винта между ним и резиновой обоймой образу

Общие принципы
При добыче нефти часто приходится встречаться с проблемой одновременной эксплуатации нескольких нефтеносных горизонтов, имеющих различные характеристики (пластовое давление, проницаемость, пористос

Общие положения
Нормальная работа добывающих или нагнетательных скважин нарушается по различным причинам, что приводит либо к полному прекращению работы скважины, либо к существенному уменьшению ее дебита. Причины

Подъемные сооружения и механизмы для ремонта скважин
Для подземного ремонта скважин необходимы подъемные сооружения и механизмы, а также специальный инструмент. Применяют подъемные сооружения двух видов: стационарные и передвижные. Стационарные подъе

Технология текущего ремонта скважин
Текущий ремонт скважин организационно осуществляется цехом по подземному ремонту скважин (ЦПРС), в составе которого может быть несколько участков. Участок объединяет несколько бригад подземного рем

Капитальный ремонт скважин
Скважины, в которых нельзя провести ремонтные работы силами бригад текущего ремонта и выполнение которых требует специального оборудования и инструмента, передаются в капитальный ремонт. Обычно кап

Новая технология ремонтных работ на скважинах
Традиционным методом ремонта скважин является ремонт с использованием насосно-компрессорных труб. В последнее время разработаны и нашли промышленное применение новые технологические приемы и технич

Ликвидация скважин
Скважины, дальнейшее использование которых признано нецелесообразным, ликвидируются. Причины ликвидации скважины могут быть следующие. 1. Сложная авария и доказанная техническая невозможно

Особенности конструкций газовых скважин
Газовые и газоконденсатные месторождения залегают в земной коре на различных глубинах: от 250 до 10 000м и более. Для извлечения углеводородных компонентов пластового флюида на поверхность земли бу

Оборудование устья газовой скважины
Оборудование устья газовой скважины предназначено для соединения верхних концов обсадных колонн и фонтанных труб, герметизации межтрубного пространства и соединений между деталями оборудования, осу

Оборудование забоя газовых скважин
Оборудование забоя газовых скважин зависит от многих факторов: 1) литологического и фациального составов пород и цементирующего материала, слагающих газовмещающий коллектор; 2) ме

Определение внутреннего диаметра колонны НКТ
Определим внутренний диаметр колонны НКТ D из условия выноса с забоя на поверхность твердых частиц заданного размера d и и плотности ρч. Силу сопротивления среды (в Н) при падении в н

Определение глубины спуска колонны НКТ в скважину
На рис. 16.13 изображена схема положения башмака (конца) колонны фонтанных труб в скважинах Ленинградского и Вуктыльского газоконденсатных месторождений (выше кровли пласта - рис. 16.13, б в интерв

Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
В газовых скважинах может происходить конденсация парообразной воды из газа и поступление воды на забой скважины из пласта. В газоконденсатных скважинах к этой жидкости добавляется углеводородный к

Системы сбора скважинной продукции
В настоящее время известны следующие системы промыслового сбора: самотечная двухтрубная, высоконапорная однотрубная и напорная. При самотечной двухтрубной системе сбора (р

Дегазация
Дегазация нефтиосуществляется с целью отделения газа от нефти. Аппарат, в котором это происходит называется сепаратором,а сам процесс разделения - сепарацией. Процесс сепа

Обезвоживание
При извлечении из пласта, движении по насосно-компрессорным трубам в стволе скважины, а также по промысловым трубопроводам смеси нефти и воды, образуется водонефтяная эмульсия- мех

Стабилизация
Под процессом стабилизации нефти понимается отделение от нее легких (пропан-бутанов и частично бензиновых) фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке. Стабил

Установка комплексной подготовки нефти
Процессы обезвоживания, обессоливания и стабилизации нефти осуществляются на установках комплексной подготовки нефти (УКПН). Принципиальная схема УКПН с ректификацией приведена на рис. 17.

Системы промыслового сбора природного газа
Существующие системы сбора газа классифицируются: - по степени централизации технологических объектов подготовки газа; - по конфигурации трубопроводных коммуникаций; - по

Промысловая подготовка газа
Природный газ, поступающий из скважин, содержит в виде примесей твердые частицы (песок, окалина), конденсат тяжелых углеводородов, пары воды, а в ряде случаев сероводород и углекислый газ. Присутст

Очистка газа от механических примесей
Для очистки природного газа от мехпримесей используются аппараты 2-х типов: - работающие по принципу «мокрого» улавливания пыли (масляные пылеуловители); - работающие по принципу

Осушка газа
Для осушки газа используются следующие методы: - охлаждение; - абсорбция; - адсорбция. Пока пластовое давление значительно больше давления в магистральном газопр

Очистка газа от сероводорода
Очистка газа от сероводорода осуществляется методами адсорбции и абсорбции. Принципиальная схема очистки газа от Н25 методом адсорбциианалогична схеме осушки га

Очистка газа от углекислого газа
Обычно очистка газа от СО2 проводится одновременно с его очисткой от сероводорода, т.е. этаноламинами (рис. 17.16).  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги