рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Механизм использования пластовой энергии при добыче нефти

Механизм использования пластовой энергии при добыче нефти - раздел Образование, Эксплуатация нефтяных и газовых скважин Жидкость Из Пласта В Скважину Поступает Под Действием Перепада Давления Между...

Жидкость из пласта в скважину поступает под действием перепада давления между пластом и забоем скважины. Поэтому пластовое давление - основной фактор, определяющий текущее энергетическое состояние залежи. Точнее, следует говорить не об абсолютной величине этого параметра, а об его соотношении с нормальным пластовым давлением на глубине залегания данной залежи, которое равно давлению столба воды равной высоты. Различают залежи, у которых начальное пластовое давление превышает эту величину (аномально-высокое пластовое давление - АВПД) и залежи с более низким начальным давлением (аномально низкое пластовое давление - АНПД).

Аномалии начального пластового давления определяются различными причинами, в основном геологического характера. Анализ данных по большому числу нефтяных месторождений тяжелых нефтей показал, что существует корреляционная зависимость между удельным весом (содержанием тяжелых компонентов в нефти) и коэффициентом аномально высокого пластового давления, который равен отношению АВПД в залежи к нормальному пластовому давлению на соответствующей глубине. Именно, с ростом удельного веса нефти наблюдается тенденция к увеличению коэффициента аномальности. Таким образом, по составу нефти, определяемому по устьевым замерам, можно оценивать АВПД в залежи.

Другая причина проявления аномального пластового давления может быть обусловлена особенностями гидростатики разноплотных жидкостей. Пусть, например, кровля нефтяного пласта находится на глубине 1000 м, водонефтяной контакт - на глубине 2000 м, а нижняя граница водной области - на глубине 3000 м. Так как давление в пластах распределяется по гидростатическому закону в соответствии с удельным весом воды, то на глубине 3000 м пластовое давление равно примерно 30 МПа, на отметке водонефтяного контакта - 20 МПа. Если принять удельный вес нефти 800 кг/м3, то на кровле нефтяного пласта давление будет равно 20 - 8 = 12 МПа, в то время как нормальное пластовое давление на этой глубине равно 10 МПа, т. е. коэффициент аномальности равен 1,2. При наличии газовой шапки этот эффект будет существенный. Можно решать и обратную задачу - по определенному распределению давления по глубине оценивать положение водонефтяного контакта.

Различают два типа источников пластовой энергии - естественные и искусственные. К естественным источникам относятся упругость пластовой системы, напор пластовых вод, наличие свободного газа (в виде газовой шапки), энергия растворенного газа, напор обусловленный силой тяжести. Пластовую энергию можно поддерживать искусственным способом - закачкой в пласт воды, пара или газа. В зависимости от того, какой источник пластовой энергии преобладает, формируется определенный режим разработки. Рассмотрим последовательно каждый из этих режимов.

В начальном состоянии пластовая система, под которой понимается вмещающий коллектор, нефтяная часть и контактирующий с ней водоносный бассейн, находится в сжатом состоянии, определяемом начальным пластовым давлением. Отбор нефти из залежи приводит к снижению там давления, в результате чего происходит расширение частиц породы, нефти и воды. А это, в свою очередь, уменьшает падение пластового давления. Таким образом, в процессе разработки начальная упругая энергия сжатия пластовой системы уменьшается. Метод разработки нефтяного месторождения, основанный на использовании запаса упругой энергии пластовой системы, называется разработкой на естественном режиме.

Горные породы, нефть и вода имеют сравнительно небольшие коэффициенты сжимаемости. Так, для воды β = 0,5-10-3 Мпа-1, для нефтей β = 10-3 Мпа-1, для горных пород - на порядок ниже. Поэтому даже при полном снижении давления от начального пластового до атмосферного за счет упругой энергии можно извлечь всего несколько процентов от начальных запасов месторождения (не более 3 - 5%). Однако если объем водоносного бассейна значительно превышает объем нефтяной залежи, то ситуация меняется. В этом случае при снижении давления прирост объема воды за счет расширения может стать соизмеримым с объемом нефтяной части, что приведет к увеличению вытесненной из пласта нефти.

Реализация такого режима в сильной степени зависит от темпов отбора нефти из залежи. При высоких темпах водоносный бассейн не успевает реагировать на изменение давления в нефтяной части, вследствие чего пластовое давление не будет поддерживаться за счет вторжения воды в нефтяную зону. Существенным недостатком водонапорного режима является неконтролируемое вторжение воды в нефтяную залежь. Это приводит к преждевременному обводнению добывающих скважин, неравномерному обводнению различных зон пласта как по толщине, так и по простиранию.

Подсчет упругого запаса пластовой энергии залежей, содержащих тяжелые нефти с повышенным содержанием асфальтено-смолистых фракций, имеет свои особенности. При изменении давления увеличение объема таких нефтей происходит с некоторым запаздыванием. Поэтому изменение пластового давления в залежи будет зависеть не только от отобранного объема нефти, но и от времени отбора т. е. от его темпа. Однако эффект будет ощущаться лишь при реализации естественного режима в «чистом» виде. При внедрении в залежь воды, влиянии свободного газа или действии других факторов эта особенность будет малоощутимой.

Напор пластовых вод может оказать влияние на показатели разработки и эксплуатации нефтяного месторождения в случае крутопадающего водоносного пласта. Систему водоносный пласт - нефтеносный пласт можно рассматривать как два сообщающихся сосуда. Снижение давления в нефтяной части за счет отбора нефти из скважин компенсируется подпором воды из «сообщающегося сосуда» - водоносного пласта. Таким образом формируется водонапорный режим.

Поддержание пластового давления при эксплуатации месторождения может происходить за счет энергии расширения свободного газа, находящегося в купольной части залежи. Такое скопление газа называется «газовой шапкой», а соответствующий режим разработки - режимом газовой шапки.

Рис. 1.1. Относительное изменения пластового давления (Р, Рн пл - текущее и начальное пластовое давление) и газового фактора (Г, Гр - текущий и растворенный в нефти газовый фактор) в зависимости от текущего коэффициента нефтеотдачи η при различных режимах работы залежи. I, II, III - пластовое давление соответственно при режимах водонапорном, газонапорном и растворенного газа;

1, 2, 3 - газовый фактор при режимах водонапорном, газонапорном и растворенного газа

 

При разработке месторождения на таком режиме стараются не отбирать газ из газовой шапки, поскольку это приведет к уменьшению запаса пластовой энергии. При этом начинается выделение газа из нефти в нефтяной части и развивается режим растворенного газа. Кроме того, при больших отборах газа из газовой шапки может произойти сильное падение давления в газовой части, в результате уровень газонефтяного контакта начнет повышаться - произойдет вторжение нефти в газовую зону. Часть нефти смочит породу и будет потеряна для добычи.

При снижении давления из нефти выделяется растворенный газ. Упругость сжатых пузырьков газа является одним из источников пластовой энергии. Режим разработки, основанный на использовании этого вида пластовой энергии, называется режимом растворенного газа. Нефтеотдача месторождения на таком режиме не превышает 20 - 30% от начальных запасов. Обычно режимы газовой шапки и растворенного газа проявляются вместе с различной интенсивностью.

Достоверно определить режим разработки нефтяной залежи, особенно на ранней стадии, зачастую затруднительно. Это связано с тем, что непосредственным наблюдением нельзя определить, что вытесняет нефть в пласте - вода или газ, какая именно вода - законтурная, например, или закачиваемая извне (если действует несколько причин, то какая из них преобладающая). Графики (рис. 1.1) для определения режимов разработки также малопригодны, поскольку для их надежного построения требуются соответствующие данные промысловых замеров в течение достаточно длительного периода, не менее нескольких лет, не говоря уже о том, что массовые замеры дебитов, пластовых давлений и газовых факторов по всем скважинам - трудоемкая и часто нереализуемая задача. В таких условиях целесообразно использование косвенных, диагностирующих показателей. С одной стороны, эти показатели должны хорошо коррелироваться с режимами разработки, с другой, быть достаточно просто и точно измеримы. Таким образом, задача определения режима разработки сводится к задаче его диагностирования по набору косвенных признаков. Поскольку результаты замеров случайным образом могут изменяться от скважины к скважине, а также во времени, то для обработки промысловой информации необходимо применять методы теории вероятности и математической статистики.

Для определения режима разработки нефтяного пласта, например, степени развития на месторождении водонапорного режима, может быть использован диагностирующий подход. Исследованиями установлено, что соотношения объемов воды и нефти влияют на составы как свободного газа, так и газа, растворенного в нефти. В связи с этим состав добываемого газа может быть использован как информативный признак для определения режима разработки пласта.

При водонапорном режиме увеличивается объем пласта, занятый водой, т. е. отношение Vн/Vг растет. По этой же причине снижение этого отношения свидетельствует о проявлении режима растворенного газа. Зная зависимость состава газа от величины этого отношения, определяя изменение его состава, можно диагностировать развитие того или иного режима. Поскольку различные компоненты по-разному реагируют на изменение соотношения Vн/Vг, то используется интегральный показатель, характеризующий изменение компонентного состава. В связи с тем что физическое обоснование связи изменения того или иного компонента с изменением отношения Vн/Vг дать затруднительно, для диагностирования режима подобным образом используется метод ранговой классификации.

Для примера ниже приведено ранжирование компонентов газа по скважинам Федоровского месторождения Западной Сибири (приведены только два компонента, ранжирование остальных проводится аналогично).

Функцию классификации R для конкретного состава газа (отобранного из определенной скважины) получают суммированием рангов всех признаков. Необходимо отметить, что при вводе месторождения в разработку для установления режима залежи требуется некоторый период времени, и режим оценивается в целом по пласту. Вместе с тем, в ходе разработки возможна смена режимов пласта. Поэтому состав газа необходимо анализировать по скважинам, которые исследовались в течение одного промежутка времени (например, в течение квартала или года). Проводя аналогичные определения через некоторые промежутки времени, можно определить динамику функции классификации R. По данным лабораторных исследований и анализа разработки ряда месторождений установлено, что рост функции классификации указывает на возрастание отношения Vн/Vг, а следовательно, на развитие водонапорного режима. Соответственно, уменьшение R свидетельствует об интенсификации режима растворенного газа. Так, по Федоровскому месторождению в течение второго и третьего годов разработки наблюдалось уменьшение R, что говорит о режиме растворенного газа. В дальнейшем интенсивная закачка воды привела к водонапорному режиму, в это же время наблюдается рост R (рис. 1.2).

 

СH4, % ..…….. 80 80 - 85 85 - 90 90 - 95 95 - 100

С2H6, % ..…... 0 - 1 1 - 2 2 - 3 3 - 4 > 4

Ранг ....……... 1 2 3 4 5

 

Важным параметром нефтяной залежи кроме пластового давления является давление насыщения нефти газом Рнас. При снижении пластового давления ниже этой величины из нефти начинает выделяться газ. Давление насыщения определяют на основе лабораторных исследований проб нефти. Применение этого метода затруднительно при глубокозалегающих пластах из-за сложностей отбора представительных проб нефти. Поэтому возникает необходимость в использовании экспресс-метода достоверной оценки давления насыщения, а также и текущего пластового давления в залежи.

Такой метод заключается в определении зависимости давления насыщения от характерных параметров нефтяной залежи. Анализ, проведенный по большому числу нефтяных месторождений страны, показал, что на давление насыщения влияют: плотность, нефти; содержание в нефти парафинов, асфальтенов, смол; компонентный состав растворенного газа; содержание в нефти углекислого газа, азота, а также пластовая температура и газовый фактор. Перечисленные признаки, характеризующие свойства нефти и газа, могут быть определены по поверхностным анализам.

Затем строят математическую зависимость давления насыщения от указанных факторов. Таким образом, оказывается возможным без проведения соответствующих глубинных замеров и отбора глубинных проб только по данным устьевой информации прогнозировать давление насыщения.

С другой стороны, процедура определения давления насыщения по косвенным показателям требует апробирования для оценки ее точности и надежности. Для этого полученные зависимости проверяются по точным значениям данной величины, например при наличии представительных глубинных проб. Если апробация метода дает удовлетворительные результаты, то его можно использовать в тех случаях, когда точные определения провести по той или иной причине нельзя.

Рис.1.2. Зависимость критерия рангов R и пластового

давления Рпл от времени для Федоровского месторождения

 

Естественно, что в чистом виде все рассмотренные выше режимы в реальных условиях не встречаются. Обычно одновременно проявляются различные источники пластовой энергии с той или иной интенсивностью. Режим работы залежи в процессе эксплуатации изменяются. Как правило, основную роль играет какой-либо один фактор, а остальные являются второстепенными. По мере эксплуатации происходит смена главенствующего фактора. Такое изменение может происходить, в частности, естественным путем. Например, при начальном пластовом давлении в залежи, превышающем давление насыщения. В начальный период будет развиваться упругий режим, а затем главенствующим становится режим растворенного газа. Аналогичным образом вследствие инерционности водяной зоны или наличия плохопроницаемых границ может задерживаться проявление упруговодонапорного режима. Другой причиной инерционности может явиться ползучесть пород, когда сжатие скелета при снижении давления происходит не мгновенно, а с запаздыванием.

Разработка месторождений только за счет естественных источников пластовой энергии малоэффективна и позволяет получить небольшие конечные коэффициенты нефтеотдачи. Это связано с быстрым истощением начальных запасов пластовой энергии по мере отбора нефти из залежи. Для повышения эффективности существующего режима разработки используют искусственное воздействие на нефтяную залежь. При этом можно как улучшить характеристики существующего режима работы залежи, так и заменить его на более эффективный в данных условиях.

Основным видом разработки месторождений в настоящее время является режим разработки с поддержанием пластового давления. Методы поддержания пластового давления различаются как по способу ввода агентов в пласт, так и по их составу и свойствам.

Для поддержания пластового давления в пласт закачивают воду, водные растворы полимеров, щелочные растворы, пены, газ, углекислый газ, пар, эмульсии, мицеллярные растворы и т. п. Выбор того или иного агента для закачки в пласт в каждом конкретном случае определяется свойствами нефти, коллектора, системой разработки и другими причинами. При этом закачиваемый в пласт агент выполняет две основные функции: поддержание пластового давления и улучшение процесса вытеснения нефти из пласта в добывающие скважины.

Закачиваемый агент поступает в пласт через нагнетательные скважины. Располагают нагнетательные скважины по площади месторождения в различном порядке, который определяется условиями конкретного месторождения.

На месторождениях высоковязких нефтей применяют тепловые методы воздействия: закачку пара или создание внутрипластового очага горения.. В последнем случае под действием высокой температуры происходит интенсивное окисление (горение) части нефти в пласте. Это приводит к образованию большого количества горячих газов. В результате происходит повышение давления в пласте и улучшение вытеснения нефти.

– Конец работы –

Эта тема принадлежит разделу:

Эксплуатация нефтяных и газовых скважин

Эксплуатация нефтяных и газовых скважин Курс... ВВЕДЕНИЕ Нефть и газ являются одними из основных видов топлива потребляемого человечеством Нефть добывают и используют сравнительно давно однако начало...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Механизм использования пластовой энергии при добыче нефти

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Курс лекций
  Томск 2009   Эксплуатация нефтяных и газовых скважин ВВЕДЕНИЕ 1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ 1.1. Понятие о нефтяной залеж

Понятие о нефтяной залежи
Нефтяная залежь представляет собой скопление жидких углеводородов в некоторой области земной коры, обусловленное причинами геологического характера. Часто нефтяная залежь имеет контакт с водяным пл

Среднее пластовое давление
По среднему пластовому давлению оценивают общее состояние пласта и его энергетическую характеристику, обусловливающую способы и возможности эксплуатации скважин. Статические давления в скважинах, р

Приведенное давление
Для объективной оценки забойных давлений и возможности их сравнения вводится понятие приведенного давления. Измеренные или вычисленные забойные давления приводятся (пересчитываются) к условной гори

Приток жидкости к скважине
Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно

Режимы разработки нефтяных месторождений
Фильтрация жидкости по пласту к забоям скважин - к точкам наиболее низкого давления осуществляется за счет пластовой энергии. Жидкость под действием пластового давления находится в сжатом состоянии

Водонапорный режим
При этом режиме фильтрация нефти происходит под действием давления краевых или законтурных вод, имеющих регулярное питание (пополнение) с поверхности за счет талых или дождевых вод или за счет непр

Упругий режим
При этом режиме вытеснение нефти происходит под действием упругого расширения самой нефти, окружающей нефтяную залежь воды и скелета пласта. Обязательным условием существования этого режима (как и

Режим газовой шапки
Этот режим проявляется в таких геологических условиях, при которых источником пластовой энергии является упругость газа, сосредоточенного в газовой шапке. Для этого необходимо, чтобы залежь была из

Режим растворенного газа
Дренирование залежи нефти с непрерывным выделением из нефти газа и переходом его в свободное состояние, увеличением за счет этого объема газонефтяной смеси и фильтрации этой uaie к точкам пониженно

Гравитационный режим
Гравитационным режимом дренирования залежей нефти называют такой режим, при котором фильтрация жидкости к забоям скважин происходит при наличии «свободной поверхности». Свободной поверхностью назыв

Цели и методы воздействия
Целями воздействия на залежь нефти являются поддержание пластового давления и, что более важно, увеличение конечной нефтеотдачи. В последнем случае методы воздействия могут быть иными, и они часто

Размещение скважин
Законтурное заводнение. Воздействие на пласт в этом случае осуществляется через систему нагнетательных скважин, расположенных за внешним контуром нефтеносности. Линия нагнетательных скважин

Основные характеристики поддержания пластового давления закачкой воды
Техника и технология ППД закачкой воды связана с некоторыми понятиями и определениями, которые характеризуют процесс, его масштабы, степень компенсации отборов закачкой, сроки выработки запасов, чи

Водоснабжение систем ППД
Основное назначение системы водоснабжения при поддержании пластового давления - добыть нужное количество воды, пригодной для закачки в пласт, распределить ее между нагнетательными скважинами и зака

Водозаборы
Водозаборы открытых водоемов обычного типа, применяемые в коммунальном хозяйстве, - самые простые водозаборы. Существенный технологический недостаток открытых водозаборов, сооружаемых в реках, - эт

Буферные емкости
Они необходимы для обеспечения резерва воды обычно для шестичасовой непрерывной работы при прекращении подачи воды со станции первого подъема. Предполагается, что за 6 ч можно устранить причины (по

Станции второго подъема
Насосные станции второго подъема осуществляют распределение воды по магистральным водоводам и снабжение ею непосредственно КНС. Располагаются они, как правило, в местах сосредоточения основных соор

Оборудование кустовых насосных станций
Кустовые насосные станции оборудуются насосами различных типов: АЯП, 5МС7Х10; 6МС7Х10 и др. В последнее время разработаны центробежные насосы специально для поддержания пластового давления. Некотор

Основные характеристики БКНС
Блок Шифр блока Масса с оборудова-нием, т Размеры, м Число блоков при числе насосов

Технология и техника использования глубинных вод для ППД
Использование вод глубинных водоносных пластов, залегающих выше или ниже нефтеносного пласта, для поддержания давления известно давно. Вначале такое использование сводилось к одновременному вскрыти

Характеристика погружных установок, спускаемых на кабеле-канате
Марка Подача, м3/сут Напор, м УЭЦНБ5А-160-1100 УЭЦНБ5А-250

Характеристика погружных высокопроизводительных насосов для ППД
Показатели УЭЦН-16-3000-1000 УЭЦН-16-2000-1400 Подача (номинальная), м3/сут

Поддержание пластового давления закачкой газа
В продуктивных коллекторах, в составе которых присутствует много глинистого материала, разбухающего при его смачивании пресной водой, закачка воды для ППД, как правило, неэффективна. Нагнетательные

Методы теплового воздействия на пласт
Эти методы являются перспективными для добычи высоковязких нефтей и нефтей с неньютоновскими свойствами. Однако существуют месторождения с такими условиями залегания и свойствами нефти, при которых

Техника закачки теплоносителя в пласт
Приготовление горячих теплоносителей для закачки их в пласт может осуществляться как на поверхности, так и на забое нагнетательной скважины. В первом случае (паровые или водогрейные котлы или разли

Внутрипластовое горение
Создание подвижного фронта горения непосредственно в пласте сокращает потери теплоты и поднимает эффективность теплового воздействия. В пористой среде, насыщенной частично коксоподобными остатками

ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
Пробуренные нефтедобывающие скважины обычно эксплуатируются несколько десятков лет. В течение этого времени месторождение проходит различные стадии разработки - от начальной, когда добывается безво

Конструкция оборудования забоев скважин
В любом случае конструкция забоя скважины должна обеспечивать: § механическую устойчивость призабойной части пласта, доступ к забою скважин спускаемого оборудования, предотвращение обрушен

Приток жидкости к перфорированной скважине
При фильтрации жидкости, подчиняющейся линейному закону, приток жидкости к скважине можно выразить следующим образом: , (4.1)

Техника перфорации скважин
Существует четыре способа перфорации: пулевая, торпедная, кумулятивная, пескоструйная. Первые три способа перфорации осуществляются на промыслах геофизическими партиями с помощью оборудова

Пескоструйная перфорация
При гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок

Характеристика насосного агрегата 4АН-700
Скорость Частота вращения, 1/мин Теоретическая подача, л/с, при втулках Давление, МПа 100 мм 12

Методы освоения нефтяных скважин
Освоение скважины - комплекс технологических операций по вызову притока и обеспечению ее продуктивности, соответствующей локальным возможностям пласта. После проводки скважины, вскрытия пласта и пе

Освоение нагнетательных скважин
Если целью освоения эксплуатационной скважины является получение возможно большего коэффициента продуктивности при данных параметрах пласта, то цель освоения нагнетательной скважины - получение воз

Назначение методов и их общая характеристика
Извлечение нефти из пласта и любое воздействие на него осуществляются через скважины. Призабойная зона скважины (ПЗС) - область, в которой все процессы протекают наиболее интенсивно. Здесь как в ед

Обработка скважин соляной кислотой
Обработка скважин соляной кислотой нашла наиболее широкое распространение вследствие своей сравнительной простоты, дешевизны и часто встречающихся благоприятных для ее применения пластовых условий.

Термокислотные обработки
Этот вид воздействия на ПЗС заключается в обработке забоя скважины горячей кислотой, нагрев которой происходит в результате экзотермической реакции соляной кислоты с магнием или некоторыми его спла

Поинтервальная или ступенчатая СКО
При вскрытии нескольких самостоятельных прослоев общим фильтром или общим открытым забоем, а также при вскрытии пласта большой толщины, в разрезе которого имеются интервалы с различной проницаемост

Кислотные обработки терригенных коллекторов
Особенность СКО терригенных (песчаники, алевролиты и др.) коллекторов заключается в том, что кислота в них не формирует отдельные каналы, проникающие в пласт на различную глубину, как в карбонатных

Техника и технология кислотных обработок скважин
На обустроенных нефтяных промыслах, на которых проектируются кислотные обработки скважин (СКО), как правило, сооружаются кислотные базы с соответствующими подъездными путями (включая железнодорожну

Гидравлический разрыв пласта
Сущность этого процесса заключается в нагнетании в проницаемый пласт жидкости при давлении, под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещ

Осуществление гидравлического разрыва
Осуществление ГРП рекомендуется в следующих скважинах. 1. Давших при опробовании слабый приток. 2. С высоким пластовым давлением, но с низкой проницаемостью коллектора. 3

Оценка размеров горизонтальных трещин
Площади трещины, м2 Эквивалент- ный радиус, м Объем трещины, м3 , при ширине 2 см 1 см

Значения коэффициентов N(b) и n(b)
b n (b) N (b) 17,0 0,44 0,15 22,72 0,55 0,106

Техника для гидроразрыва пласта
Гидроразрыв пласта всегда предпочтительно делать через обсадную колонну, если ее состояние, герметичность и прочность позволяют создать на забое скважины необходимые давления (Pр). Потери

Тепловая обработка призабойной зоны скважины
Тепловая обработка призабойной зоны скважины (ПЗС) целесообразна при добыче тяжелых вязких нефтей или нефтей с высоким содержанием парафина и асфальтосмолистых компонентов (более 5 - 6%). Поскольку

Термогазохимическое воздействие на призабойную зону скважины
Термогазохимическое воздействие на призабойную зону скважины (ТГХВ) заключается в сжигании на забое скважины порохового заряда, спускаемого на электрокабеле. Время его сгорания регулируется н может

Другие методы воздействия на призабойную зону скважин
Кроме описанных основных методов воздействия на ПЗС существуют другие менее распространенные вследствие своей низкой эффективности либо проходящие промышленные испытания и находящиеся в стадии изуч

Назначение и методы исследования скважин
Существует много методов исследования скважин н технических средств для их осуществления. Все они предназначены для получения информации об объекте разработки, об условиях и интенсивности притока н

Исследование скважин при установившихся режимах
В главе 2 была получена формула (2.10) радиального притока жидкости к скважине , (6.1) Если e = e(r), то

Исследование скважин при неустановившихся режимах
Если давление на забое Рс, а тем более пластовое Рк превышает давление насыщения Рнас, то предполагается, что перераспределение давления в пласте после любых возмущений происходит по законам упруго

Термодинамические исследования скважин
Известно, что колебания температуры на земной поверхности вызывают изменения температуры на малой глубине. Суточные колебания температуры затухают на глубине менее метра и годовые - на глубине прим

Скважинные дебитометрические исследования
При добыче нефти очень редко приходится эксплуатировать однородные, монолитные, насыщенные нефтью пласты. Обычно на забое скважины имеются несколько перфорированных интервалов, соответствующих отде

Техника и приборы для гидродинамических исследований скважин
Приборы спускают в скважины без остановки их работы. Поскольку доступ к забою через НКТ возможен в фонтанных и газлифтных скважинах, на устьях которых всегда имеется давление, иногда очень значител

Зависимость подачи жидкости от расхода газа
Качественную характеристику процесса движения газожидкостной смеси (ГЖС) в вертикальной трубе легче уяснить из следующего простого опыта (рис. 7.1). Представим, что трубка 1 длиною L погружена под

Зависимость положения кривых q (V) от погружения
Поскольку при наших рассуждениях никаких ограничений на величину e не накладывалось, то при любых e, лежащих в пределах 0 < e < 1, вид соответствующих кривых q(V) будет одинаковый. При увелич

Зависимость положения кривых q(V) от диаметра трубы
В наших рассуждениях никаких ограничений на диаметр подъемной трубы и на ее длину не накладывается. Поэтому аналогичное семейство кривых q(V) должно существовать для подъемников любого диаметра и л

К. п. д. процесса движения ГЖС
На каждой кривой q(V) имеется еще одна характерная и очень важная точка, точка так называемой оптимальной производительности, соответствующая наибольшему к. п. д. Если проанализировать произвольную

Зависимость оптимальной и максимальной подач от относительного погружения
Для любого семейства кривых q(V), построенного для данного диаметра труб, можно найти qmax и qопт и проследить их зависимость от изменения относительного погружения ε. С увеличением ε вел

Структура потока ГЖС в вертикальной трубе
В зависимости от физических свойств жидкости и характера ввода газа в поток могут возникать различные структуры движения ГЖС в трубе, которые существенным образом влияют на энергетические показател

Уравнение баланса давлений
При проектировании или анализе работы установок для подъема жидкости из скважин, когда по НКТ движется ГЖС, основным вопросом является определение потерь давления, связанных с этим движением. Рассм

Плотность газожидкостной смеси
Через данное сечение трубы при движении по ней ГЖС проходит некоторое количество газа и жидкости. Можно представить, что все газовые пузырьки занимают в сечении трубы суммарную площадь fг, а жидкос

Формулы перехода
В литературе по вопросам движения ГЖС для вычисления рс различные авторы используют различные выражения и различные подходы к определению этой важной величины. Покажем, что все возможное разнообраз

ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
  Фонтанирование скважин обычно происходит на вновь открытых месторождениях нефти, когда запас пластовой энергии велик, т. е. давление на забоях скважин достаточно большое, чтобы прео

Артезианское фонтанирование
Теоретическое описание процесса артезианского фонтанирования практически не отличается от расчета движения однородной жидкости по трубе. Давление на забое скважины Рс при фонтанировании

Фонтанирование за счет энергии газа
Это наиболее распространенный способ фонтанирования нефтяных скважин. Уже было отмечено, что при артезианском фонтанировании в фонтанных трубах движется негазированная жидкость (нефть), поэтому, чт

Условие фонтанирования
Фонтанирование возможно лишь в том случае, если энергия, приносимая на забой жидкостью, равна или больше энергии, необходимой для подъема этой жидкости на поверхность при условии, что фонтанный под

Расчет фонтанного подъемника
Дебиты фонтанных скважин изменяются в широких пределах как по количеству жидкости, так и по количеству попутного газа. С одной стороны, известны фонтанные скважины, дающие более 1000 м3/

Расчет процесса фонтанирования с помощью кривых распределения давления
Умение рассчитывать при любых заданных условиях кривую распределения давления вдоль НКТ при движении по ним газожидкостной смеси позволяет по-новому подойти к расчету процесса фонтанирования, выбор

Оборудование фонтанных скважин
Геологические условия нефтяных и газовых месторождений, из которых добываются нефть и газ, различны. Они отличаются глубиной залегания продуктивного пласта, характеристикой и устойчивостью проходим

Колонная головка
Она предназначена для обвязки устья скважины с целью герметизации межтрубных пространств, а также для подвески обсадных колонн и установки фонтанной арматуры. Существуют одно-, двух-, трех-, четыре

Фонтанная арматура
Фонтанная арматура предназначена для подвески одной или двух колонн фонтанных труб; для герметизации и контроля пространства между фонтанными трубами и обсадной колонной; для проведения технологиче

Штуцеры.
Они являются элементом фонтанной елки и предназначены для регулирования режима работы фонтанной скважины и ее дебита. Штуцеры устанавливаются на обеих выкидных линиях арматуры и подразделяются на н

Манифольды
Манифольд предназначен для обвязки фонтанной арматуры с трубопроводом, подающим продукцию скважины на замерную установку. Применяются различные схемы таких обвязок в зависимости от местных условий

Регулирование работы фонтанных скважин
Как правило, на начальных этапах разработки фонтанные скважины и особенно высокодебитные определяют возможности нефтедобывающего предприятия. Поэтому их исследованию, регулированию и наблюдению за

Открытое фонтанирование
При добыче нефти и газа известно очень много случаев открытого фонтанирования и грандиозных продолжительных пожаров фонтанных скважин, приводящих к преждевременному истощению месторождения и образо

Предупреждение отложений парафина
Известно, что нефть есть сложная смесь различных углеводородов, как легких, так и тяжелых, находящихся в термодинамическом равновесии при пластовых условиях. Добыча нефти сопровождается неизбежным

Отложение солей
Отложение солей на стенках НКТ подземного оборудования и даже в призабойной зоне наблюдается на некоторых месторождениях нефти при закачке в пласт пресной воды для ППД. Основным наполнител

Общие принципы газлифтной эксплуатации
Газлифтная скважина - это по существу та же фонтанная скважина, в которой недостающий для необходимого разгазирования жидкости газ подводится с поверхности по специальному каналу (рис. 9.1). По кол

Конструкции газлифтных подъемников
Два канала, необходимых для работы газлифтной скважины в реальных условиях, создаются двумя рядами концентрично расположенных труб, т. е. спуском в скважину первого (внешнего) и второго (внутреннег

Пуск газлифтной скважины в эксплуатацию (пусковое давление)
Эксплуатация скважин не протекает бесперебойно. По различным причинам их приходится останавливать для ремонта и вновь пускать в эксплуатацию. Пуск газлифтных скважин имеет некоторые особенности, св

Последовательный допуск труб
Башмак подъемных труб в этом случае спускается под статический уровень не на проектную глубину, а на такую, при которой можно продавить скважину имеющимся давлением Рк (давление ко

Применение пусковых отверстий
На колонне лифтовых труб ниже статического уровня заблаговременно сверлятся так называемые пусковые отверстия. При закачке газа в межтрубное пространство опускающийся уровень жидкости обнажает перв

Газлифтные клапаны
Современная технология зксплуатации газлифтных скважин неразрывно связана с широким использованием глубинных клапанов специальной конструкции, с помощью которых устанавливается или прекращается свя

Принципы размещения клапанов
Пусковые клапаны должны обладать большим закрывающим перепадом давлений, чтобы закрыться тогда, когда оттесняемый уровень жидкости достигнет следующего клапана и даст доступ газу через второй клапа

Принципы расчета режима работы газлифта
Определение параметров режима работы газлифтной скважины основано на использовании кривых распределения давления при движении ГЖС в трубе. Важнейшими величинами, подлежащими определению, являются у

Оборудование газлифтных скважин
Арматура, устанавливаемая на устье газлифтных скважин, аналогичная фонтанной арматуре и имеет то же назначение - герметизацию устья, подвеску подъемных труб и возможность осуществления различных оп

Системы газоснабжения и газораспределения
Технически правильно организованная система газлифтной эксплуатации обязательно должна предусматривать использование отработанного в газлифтных скважинах газа низкого давления или так называемый за

Периодический газлифт
Обычно разработка нефтяного месторождения сопровождается снижением пластового давления. Для эффективной работы газлифта необходимо иметь относительное погружение ε = 0,5 - 0,6. При падении пла

Исследование газлифтных скважин
Исследование газлифтных скважин необходимо для: § установления режима работы скважины с минимальным расходом нагнетаемого газа; § снятия индикаторной линии или определения уравнен

Подача штангового скважинного насоса и коэффициент подачи
При перемещении плунжера вверх на величину его хода Sn вытесняется объем жидкости где F - площадь сечения плунжера (или ц

Влияние газа
Влияние газа в откачиваемой жидкости учитывается коэффициентом наполнения цилиндра насоса. Он равен отношению объема жидкости Vж, поступившей в насос, ко всему объему смеси Vcм, состоящему из объем

Влияние потери хода плунжера
Поскольку теоретическая подача насоса определяется длиной хода точки подвеса штанг S, то всякое уменьшение действительного хода плунжера по сравнению с S непосредственно влияет на фактическую подач

Влияние утечек
Рассмотрим утечки через зазор между плунжером и цилиндром насоса. Утечки в клапанах возникают, как правило, в изношенном насосе и отсутствуют в нормально работающем. Они приводят к перетеканию жидк

Влияние усадки жидкости
Через ШСН проходит некоторый объем нефти и воды при давлении и температуре на приеме насоса. Когда продукция попадает в товарный парк, она дегазируется и охлаждается. Это учитывается объемными коэф

Нагрузки, действующие на штанги, и их влияние на ход плунжера
Динамика работы установки ШСН очень сложна. Однако в большинстве случаев упрощенная теория ее работы дает вполне приемлемые результаты. При ходе вверх статические нагрузки в точке подвеса штанг скл

Влияние статических нагрузок
Сила Рж действует попеременно то на штанги (ход вверх), то на трубы (ход вниз). В результате этого при ходе вверх штанги дополнительно растягиваются на величину λш, которая может быть определе

Штанговые скважинные насосы
Насосы разделяются на невставные или трубные и вставные. Основные особенности их состоят в следующем. Невставные насосы. Цилиндр спускается в скважину на насосных трубах б

Характеристики штанг и муфт
Штанги Муфты соединительные Масса, кг Масса колонны в воздухе, кг/м Площадь сечения штанги, см2

Прочностные характеристики штанг и условия их использования
Сталь Термообработка Условия работы в скважине Нормализация Для легких условий эксплуатации:

Основные показатели групп прочности стали труб
Показатели Д К E Л М Временное сопротивление σв, МПа

Характеристики насосно-компрессорных труб
Условный диаметр, мм Толщина стенки, мм Внутренний диаметр, мм НКТ гладкие НКТ равнопрочные Стр

Оборудование устья скважины
Устьевое оборудование штанговой насосной скважины предназначено для герметизации затрубного пространства и отвода продукции скважины. В связи с широким распространением однотрубной системы

Канатная подвеска
Сальниковый шток присоединяется к головке балансира с помощью канатной подвески. Конструкция канатной подвески допускает установку прибора - динамографа для снятия диаграммы - зависимости силы, дей

Штанговращатель
Штанговращатель - механическое приспособление, закрепляемое на сальниковом штоке для медленного проворачивания колонны штанг и плунжера «на заворот» при каждом ходе головки балансира. Штан

Станки-качалки (СК)
На нефтяных промыслах в эксплуатации имеются СК различных типоразмеров и конструкций. В настоящее время СК выпускаются по ГОСТ 5866 - 76. В механическом и кинематическом отношении они достаточно со

Исследование скважин, оборудованных штанговыми насосными установками
Исследование ШСНУ необходимо для изучения притока и построения индикаторной кривой, а также для изучения работы самого насоса и выявления причин низкого коэффициента подачи. Изменение отбо

Динамометрия ШСНУ
Снятие диаграммы нагрузки на полированный шток в зависимости от хода называется динамометрией ШСНУ. Она осуществляется силоизмерительным регистрирующим прибором - динамометром. Сопоставлен

Динамограмма и ее интерпретация
Теоретическая динамограмма показана на рис. 10.13. На нее наложена (показана пунктиром) типичная фактическая динамо-грамма исправного насоса, спущенного на небольшую глубину и работающего в условия

Эксплуатация скважин штанговыми насосами в осложненных условиях
При работе штанговых насосных установок часто встречаются особые условия, осложняющие работу этих установок. К ним следует отнести: большое газосодержание на приеме насоса; большое содержание песка

Погружной насосный агрегат
Насосный агрегат состоит из насоса (рис. 11.3, а), узла гидрозащиты (рис. 11.3, 6), погружного электродвигателя ПЭД (рис. 11.3, в), компенсатора (рис. 11.3, г), присоединяемого к нижней части ПЭДа.

Элементы электрооборудования установки
ПЭД питается электроэнергией по трехжильному кабелю, спускаемому в скважину параллельно с НКТ. Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работ

Характеристика кабелей, применяемых для УПЦЭН
Кабель Число жил и площадь сечения, мм2 Наружный диаметр, мм Наружные размеры плоской части, мм Масса, кг/км

Установка ПЦЭН специального назначения
Погружные центробежные насосы применяются не только для эксплуатации добывающих скважин. Они находят применение. 1. В водозаборных и артезианских скважинах для снабжения технической водой

Определение глубины подвески ПЦЭН
Глубина подвески насоса определяется: 1) глубиной динамического уровня жидкости в скважине Нд при отборе заданного количества жидкости; 2) глубиной погружения ПЦЭН под

Определение глубины подвески ПЦЭН c помощью кривых распределения давления
Глубина подвески насоса и условия работы ЭЦЭН как на приеме, так и на его выкиде довольно просто определяется с помощью кривых распределения давления вдоль ствола скважины и НКТ. Предполагается, чт

Принцип действия гидропоршневого насоса
Гидропоршневые насосы (ГПН) состоят из двух основных частей: гидравлического поршневого двигателя объемного типа D (рис. 12.1) и соединенного с двигателем общим штоком поршневого насоса двухсторонн

Подача ГПН и рабочее давление
Рассмотрим работу ГПН двойного действия, так как такие агрегаты являются наиболее современными. Обозначим: Рн - площадь поршня насоса, откачивающего пластовую жидкость; f - площадь сечения штока; S

ПОГРУЖНЫЕ ВИНТОВЫЕ НАСОСЫ
Основным элементом погружного винтового насоса (ПВН) является червячный винт, вращающийся в резиновой обойме специального профиля. В пределах каждого шага винта между ним и резиновой обоймой образу

Общие принципы
При добыче нефти часто приходится встречаться с проблемой одновременной эксплуатации нескольких нефтеносных горизонтов, имеющих различные характеристики (пластовое давление, проницаемость, пористос

Общие положения
Нормальная работа добывающих или нагнетательных скважин нарушается по различным причинам, что приводит либо к полному прекращению работы скважины, либо к существенному уменьшению ее дебита. Причины

Подъемные сооружения и механизмы для ремонта скважин
Для подземного ремонта скважин необходимы подъемные сооружения и механизмы, а также специальный инструмент. Применяют подъемные сооружения двух видов: стационарные и передвижные. Стационарные подъе

Технология текущего ремонта скважин
Текущий ремонт скважин организационно осуществляется цехом по подземному ремонту скважин (ЦПРС), в составе которого может быть несколько участков. Участок объединяет несколько бригад подземного рем

Капитальный ремонт скважин
Скважины, в которых нельзя провести ремонтные работы силами бригад текущего ремонта и выполнение которых требует специального оборудования и инструмента, передаются в капитальный ремонт. Обычно кап

Новая технология ремонтных работ на скважинах
Традиционным методом ремонта скважин является ремонт с использованием насосно-компрессорных труб. В последнее время разработаны и нашли промышленное применение новые технологические приемы и технич

Ликвидация скважин
Скважины, дальнейшее использование которых признано нецелесообразным, ликвидируются. Причины ликвидации скважины могут быть следующие. 1. Сложная авария и доказанная техническая невозможно

Особенности конструкций газовых скважин
Газовые и газоконденсатные месторождения залегают в земной коре на различных глубинах: от 250 до 10 000м и более. Для извлечения углеводородных компонентов пластового флюида на поверхность земли бу

Оборудование устья газовой скважины
Оборудование устья газовой скважины предназначено для соединения верхних концов обсадных колонн и фонтанных труб, герметизации межтрубного пространства и соединений между деталями оборудования, осу

Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите среды обитания. Условиям надежности, дол

Оборудование забоя газовых скважин
Оборудование забоя газовых скважин зависит от многих факторов: 1) литологического и фациального составов пород и цементирующего материала, слагающих газовмещающий коллектор; 2) ме

Определение внутреннего диаметра колонны НКТ
Определим внутренний диаметр колонны НКТ D из условия выноса с забоя на поверхность твердых частиц заданного размера d и и плотности ρч. Силу сопротивления среды (в Н) при падении в н

Определение глубины спуска колонны НКТ в скважину
На рис. 16.13 изображена схема положения башмака (конца) колонны фонтанных труб в скважинах Ленинградского и Вуктыльского газоконденсатных месторождений (выше кровли пласта - рис. 16.13, б в интерв

Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
В газовых скважинах может происходить конденсация парообразной воды из газа и поступление воды на забой скважины из пласта. В газоконденсатных скважинах к этой жидкости добавляется углеводородный к

Системы сбора скважинной продукции
В настоящее время известны следующие системы промыслового сбора: самотечная двухтрубная, высоконапорная однотрубная и напорная. При самотечной двухтрубной системе сбора (р

Дегазация
Дегазация нефтиосуществляется с целью отделения газа от нефти. Аппарат, в котором это происходит называется сепаратором,а сам процесс разделения - сепарацией. Процесс сепа

Обезвоживание
При извлечении из пласта, движении по насосно-компрессорным трубам в стволе скважины, а также по промысловым трубопроводам смеси нефти и воды, образуется водонефтяная эмульсия- мех

Стабилизация
Под процессом стабилизации нефти понимается отделение от нее легких (пропан-бутанов и частично бензиновых) фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке. Стабил

Установка комплексной подготовки нефти
Процессы обезвоживания, обессоливания и стабилизации нефти осуществляются на установках комплексной подготовки нефти (УКПН). Принципиальная схема УКПН с ректификацией приведена на рис. 17.

Системы промыслового сбора природного газа
Существующие системы сбора газа классифицируются: - по степени централизации технологических объектов подготовки газа; - по конфигурации трубопроводных коммуникаций; - по

Промысловая подготовка газа
Природный газ, поступающий из скважин, содержит в виде примесей твердые частицы (песок, окалина), конденсат тяжелых углеводородов, пары воды, а в ряде случаев сероводород и углекислый газ. Присутст

Очистка газа от механических примесей
Для очистки природного газа от мехпримесей используются аппараты 2-х типов: - работающие по принципу «мокрого» улавливания пыли (масляные пылеуловители); - работающие по принципу

Осушка газа
Для осушки газа используются следующие методы: - охлаждение; - абсорбция; - адсорбция. Пока пластовое давление значительно больше давления в магистральном газопр

Очистка газа от сероводорода
Очистка газа от сероводорода осуществляется методами адсорбции и абсорбции. Принципиальная схема очистки газа от Н25 методом адсорбциианалогична схеме осушки га

Очистка газа от углекислого газа
Обычно очистка газа от СО2 проводится одновременно с его очисткой от сероводорода, т.е. этаноламинами (рис. 17.16).  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги