Представление масс-спектра вещества и его интерпретация

Масс-спектр вещества обычно представляется в виде вертикальных отрезков, каждый из которых представляет ион, имеющий определенное отношение массы к заряду m/z (положение на оси абсцисс) и величину, которая указывает на относительную встречаемость иона в образце (ордината Iспектра) (рис. 9.1).

Рис. 9.1. Пример масс-спектра простого соединения в графическом виде

 

Наиболее интенсивный пик обычно имеет встречаемость равную 100% и считается основным пиком. Наибольшая величина отрезка (наибольшая масса) обычно ассоциируется с молекулярным ионом, тогда как меньшие массы ассоциируются с его фрагментами. Если ионы в масс-спектре имеют заряд равный единице, то положения их пиков эквивалентны их массам.

 

Интерпретация масс-спектра

Опишем несколько простых правил расшифровки масс-спектров.

Спектры обычно расшифровывают от большего отношения m/z к меньшему, поскольку крупные фрагменты обычно наиболее информативны. Для них возможно лишь весьма ограниченное число путей образования, тогда как мелкие могут возникать самыми разными путями и извлечь аналитически полезную информацию о них из спектра гораздо труднее.

Молекулярный ион

Начинать интерпретацию спектра следует с установления пика молекулярного иона, т.е. пика, соответствующего ионизированной, но не распавшейся исходной молекулы. Обычно его обозначают буквой М. Относительная интенсивность пика М позволяет сделать определенные предположения о его структуре и принадлежности анализируемого соединения к тому или иному классу. Масса M равна массе ионизируемой молекулы, за вычетом массы одного электрона. Вероятность образования молекулярного иона больше для малых простых молекул. С ростом числа атомов в молекулах растет вероятность фрагментации иона М+. Такие устойчивые группы как бензольное кольцо наоборот, способствуют образованию молекулярного иона. На самом деле молекулярные массы могут иметь только дискретные значения, что сразу резко ограничивает число возможных структур, а более подробный анализ спектра в области пика молекулярного иона позволяет получить еще целый ряд дополнительных сведений. Приведем простой пример. Природный бром состоит из двух изотопов 79Br и 81Br в соотношении 1:1. Поэтому молекулярный ион любого соединения, содержащего один атом брома, дает в масс-спектре два пика равной интенсивности, различающиеся на две атомных единицы массы. Такой дуплет в спектре весьма характерен и сразу указывает на наличие в анализируемом соединении только одного атома брома. А если бы в нем было два атома брома, то соответствующие ионы дали бы пик в виде триплета с расстоянием между компонентами в две единицы массы и соотношением интенсивностей 1:2:1.

Однако при выборе пика молекулярного иона следует помнить, что уменьшение М на величину от 5 до 14 или от 21 до 25 а.е.м., приводящее к возникновению интенсивных пиков ионов, крайне маловероятны. Если в спектре такие пики все же присутствуют, то наиболее интенсивный пик М взятый в качестве молекулярного, по-видимому, выбран неверно или в образце имеются примеси. Например, если в масс-спектре чистого соединения самый тяжелый ион имеет массу 120, а следующий за ним – 112, ион 120 – не молекулярный, а фрагментарный. Кроме того, если интенсивность пика М+2 составляет менее 3% от интенсивности пика М, то соединение не содержит атомов хлора, брома, серы и кремния, что связано с природой изотопов этих элементов.

Далее анализируем фрагменты. Молекулярный ион распадается на две частицы: заряженную и нейтральную. Последняя часто оказывается высокоустойчивой малой молекулой типа H2O, CO и т.п. Эти фрагменты нейтральны, однако их можно идентифицировать косвенно – по разности масс молекулярного иона и заряженного фрагмента. Последние часто описывают как разности, например: M-H2O, или M-18; M-CO, или M-28; M-CH3, или M-15; M-H2C=C=O, или М-42 и т.д. Состав таких больших фрагментов обычно легко идентифицировать, так как число вариантов состава малых фрагментов весьма невелико. Так, например, для обычных органических соединений М-18 – это всегда M-H2O. А интенсивный сигнал иона М - Н (М-1) означает не только наличие лабильного атома водорода, но и отсутствие других лабильных групп в этом положении. В области высоких масс важны практически все пики, даже если их интенсивность ниже 1%. Фрагментов, которые возникают непосредственно за распадом молекулярного иона, может быть несколько, так как распад может протекать по нескольким направлениям.

Первичные фрагменты, в свою очередь, подвергаются дальнейшему распаду. Так возникают серии ионов, отвечающих определенным путям распада, или, как чаще говорят, фрагментации молекулярного иона.

Фрагментация молекулярного иона.

Фрагментация молекулярного иона может идти в разных направлениях, обусловленных строением молекулы и методом ионизации. Процесс ионизации не является простым удалением электрона у одной из связей. В действительности, возникший заряд настолько быстро перераспределяется по связям, что при ионизации происходит одновременное ослабление всех связей, но одна из связей может ослабляться в большей степени, чем другие. С ростом энергии ионизирующих агентов вначале рвутся самые слабые связи, а при больших энергиях возрастают вероятности разрыва более прочных связей, и появляются всевозможные осколочные ионы. Количественной характеристикой осколочных ионов является их потенциал появления, т.е. минимальная энергия ионизирующего агента, которой достаточно для образования соответствующего осколочного иона. Наличие осколочных ионов, наряду с молекулярными и другими ионами, делает масс-спектр характеристичным для данного вещества. Виды осколочных ионов, их относительные интенсивности приводятся в специальных каталогах или атласах масс-спектров, которые используются для идентификации анализируемых веществ.

Многие вещества дают перегруппировочные ионы, происхождение которых не может быть объяснено простым разрывом связей в молекулярном ионе, т.е. они возникают в результате перегруппировки атомов в момент диссоциации. Это означает, что фрагментация может сопровождаться разрывом одних и образованием других связей. Особенно часто наблюдаются перегруппировки с миграцией атома водорода. Характерный признак перегруппировочных ионов – постоянство их относительной интенсивности при изменении давления или понижении энергии ионизирующих агентов. Описания механизмов их образования основаны на различных допущениях, но перегруппировочные ионы часто характерны для каждой группы соединений и поэтому важны для расшифровки масс спектров.

Метастабильные ионы, как и перегруппировочные ионы, являются разновидностью осколочных. Если распад молекулярного иона происходит на пути между выходным отверстием и входом в масс-анализатор (время жизни около 10-6 сек), то в масс-спектре наблюдаются метастабильные ионы. Они обычно дают пики с дробным значением массы и с характерным внешним видом: диффузные, размытые, с низкой интенсивностью. Размытость пика связана с тем, что распад первичного иона протекает в разных точках траектории его движения с потерей различного количества кинетической энергии. Метастабильные ионы широко используются для установления путей фрагментации и структуры молекул исследуемого соединения.

При высоких энергиях ионизации возможна потеря молекулой сразу двух и более электронов с образованием ионов с зарядом +2 и выше (многозарядные ионы). Такие ионы будут иметь сооношения m/z равными m/2, m/3 и т.д. Если значение массы m нечетное, в масс-спектре будут регистрироваться ионы с дробными m/z, что позволяет отличать многозарядные ионы от однозарядных. Достаточно часто двухзарядные ионы образуются из ароматических соединений. Их интенсивности значительны у соединений со стабильной кольцевой (циклической) структурой, особенно если в ней содержатся гетероатомы: азот, кислород. На гетероатоме в молекулярном ионе локализуется положительный заряд, что облегчает удаление следующего электрона из иона без его диссоциации. Многозарядные ионы также могут претерпевать фрагментацию.

Вероятность образования отрицательных ионов в тысячи раз меньше, чем образования положительных ионов. Масс-спектр отрицательных ионов много беднее, но может давать важную информацию о строении молекул. Такие ионы образуются в результате: резонансного захвата молекулой электрона (AB + e- →AB-), диссоциативного резонансного захвата (AB+e- → A- + B), ион-молекулярных реакций (AB+C-→ ABC-) и при распаде молекулы на пару ионов (AB→A- + B+).

В масс-спектрах органических соединений относительно интенсивные пики молекулярного иона сопровождаются «сателлитами» в области бóльших массовых чисел. Это связано с тем фактом, что у «биологических» элементов (С, Н, О, N, S) в природе более распространены легкие изотопы. Пики изотопных ионов имеют массы на 1, 2, 3 и т.д. а.е.м. больше, чем первичный молекулярный ион. Изотопные пики в масс-спектрах облегчают отнесение пиков молекулярных ионов, установление брутто-формулы вещества.

Эти общие правила обычно весьма конкретны при установлении качественных корреляций между структурой изомеров какого-либо типа соединений и позволяют выбрать характеристические пики и характеристические потери, лежащие в основе идентификации неизвестного соединения. Искусство расшифровки спектра в значительной мере состоит в умении из большого числа пиков выделить такие, которые увязываются в определенные серии – последовательности фрагментации исходного иона. Когда такие серии выявлены, восстановить картину распада и, следовательно, структуру анализируемого вещества уже значительно проще, особенно если исследователь располагает общими сведениями о характерных путях фрагментации соединений данного класса.

На практике не стоит забывать также про следующие закономерности молекулярной фрагментации: