рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГЛАДКИЕ МЫШЦЫ

ГЛАДКИЕ МЫШЦЫ - раздел Образование, Физиология возбудимых тканей В Организме Высших Животных И Человека Гладкие (Неисчерченные) Мышцы Находятс...

В организме высших животных и человека гладкие (неисчерченные) мышцы находятся во внутренних органах, сосудах и коже. Их активность не управляется произвольно, функции многих из них слабо контролируют­ся ЦНС, некоторые из них обладают автома­тизмом и зачастую собственными интрамуральными нервными сплетениями, в значи­тельной мере обеспечивающими их самоуп­равление. Поэтому гладкую мускулатуру, как и мышцу сердца, называют непроизвольной. Медленные, часто ритмические сокращения гладкомышечных стенок внутренних орга­нов — кишечника, желудка, мочеточников, протоков пищеварительных желез и др.− обес­печивают перемещение содержимого этих органов. Тоническое сокращение стенок ар­терий и артериол поддерживает оптимальный уровень кровяного давления и кровоснабже­ние органов и тканей.

3.2.1. Структурно-функциональные особенности гладких мышц

Гладкие мышцы построены из веретенооб­разных одноядерных мышечных клеток.

Их толщина составляет 2—10 мкм, длина — от 50 до 400 мкм. Волокна очень тесно примыкают друг к другу и связаны между собой низкоомными электрическими контактами — нексусами. Несмотря на наличие межклеточных щелей шириной 60—150 нм, гладкая мышца функционирует как синцитий — функцио­нальное образование, в котором возбуждение (медленные волны деполяризации и ПД) способно беспрепятственно передаваться с одной клетки на другую по крайней мере в пределах одного мышечного пучка, являю­щегося обычно функциональной единицей гладкой мышцы). Этим свойством гладкая мышца отличается от скелетной и сходна с сердечной, которая тоже представляет собой функциональный синцитий. Однако в сердце достаточно возбудить один миоцит — и воз­буждение охватит весь миокард. В гладких мышцах ПД, возникший в одной клетке, рас­пространяется лишь на определенное рассто­яние.

Потенциал покоя некоторых гладкомы­шечных волокон, обладающих автоматией, обнаруживает постоянные небольшие коле­бания. Его величина меньше значе­ния мембранного потенциала скелетных мышц и составляет в волокнах, не обладаю­щих автоматией, 60—70 мВ, она несколь­ко ниже в спонтанно активных клетках — 30-70 мВ.

Потенциал действия. В гладких мышцах внутренних органов регистрируются ПД двух основных типов: пикоподобные ПД и ПД с выраженным плато. Длительность пикоподобных ПД составляет 5—80 мс; ПД с плато, характерными для гладких мышц матки, уретры и некоторых сосудов, длятся от 30 до 500 мс.

Ионный механизм возникновения ПД в гладких мышцах существенно отличается от такового в скелетных мышцах. Удаление из омывающего раствора ионов Nа+ (замена их ионами Li+ или холина) не препятствует возникновению полноценных ПД гладких мышц. Удаление из раствора ионов Са2+ или воздействие на мышечные клетки блокаторов кальциевых каналов (например, верапамила) приводит к обратимому угнетению ПД. Все эти факты говорят о главной роли ионов Са2+ в генерации ПД гладких мышц. Электровоз­будимые медленные кальциевые каналы об­ладают меньшей ионной избирательностью, нежели «быстрые» натриевые каналы нерв­ных и поперечно исчерченных мышечных волокон. Помимо двухвалентных катионов, они проницаемы и для ионов Nа+.

ПД гладких мышц, состоящие из началь­ного пикового компонента и последующего плато, имеют более сложную ионную приро­ду. Например, в гладких мышцах мочеточни­ков начальный фрагмент ПД имеет преиму­щественно кальциевую природу, а последую­щий медленный компонент (плато) — пре­имущественно натриевую природу.

3.2.2. Механизм сокращения и пластичность гладкой мышцы

Процесс сокращения гладкомышечных во­локон совершается по тому же механизму скольжения нитей актина и миозина относи­тельно друг друга, что и в скелетных мышцах.

Однако у гладкомышечных клеток нет той стройной аранжировки сократительных бел­ков, как у скелетных мышц. У этих клеток миофибриллы с саркомерами расположены нерегулярно, поэтому клетка не имеет по­перечной исчерченности. Электромеханичес­кое сопряжение в этих клетках идет иначе, чем в скелетных мышцах, так как в них слабо выражен саркоплазматический ретикулум. В связи с этим триггером для мышечного со­кращения служит поступление ионов Са2+ в клетку из межклеточной среды в процессе ге­нерации ПД. Того количества кальция, кото­рое входит в клетку при возбуждении, вполне достаточно для полноценного фазного сокра­щения.

Инициация сокращений гладких мышц с помощью ионов Са2+ также имеет несколько другой механизм, чем в поперечнополосатых волокнах. Ионы Са2+ воздействуют на белок кальмодулин, который активирует киназы легких цепей миозина. Это обеспечивает перенос фосфатной группы на миозин и сразу вызывает срабатывание, т.е. сокраще­ние, поперечных мостиков. О существовании тропонин-тропомиозиновой системы сведе­ний не имеется. При снижении в миоплазме концентрации ионов Са2+ фосфатаза дефосфорилирует миозин, и он перестает связы­ваться с актином. Скорость сокращения гладких мышц невелика — на 1—2 порядка ниже, чем у скелетных мышц. Сила сокра­щений некоторых гладких мышц позвоноч­ных не уступает силе сокращений скелетных мышц.

Подобно сердечной и скелетной мускулатуре, гладкие мышцы всегда расслабляются при падении внутриклеточной концентрации Са2+ ниже 10-7 М. Однако их рас­слабление происходит гораздо медленнее, посколь­ку скорость поглощения ионов Са2+ саркоплазматическим ретикулумом или удаления их через кле­точную мембрану здесь ниже. Удаление Са2+ при­водит к расщеплению фосфатазой функционально важной фосфатной группы миозина. Его дефосфорилированные головки теряют способность образо­вывать поперечные мостики с актином. Пока неяс­но, каким образом образующиеся в гладкомышечных клетках цАМФ и цГМФ вызыва­ют понижение их тонуса. Возможно, цАМФ ингибирует активность киназы легких цепей миозина или усиливает поглощение Са2+ саркоплазматическим ретикулумом. С другой стороны, вполне вероятна роль цГМФ как внутриклеточного посредника в рас­слаблении гладких мышц сосудов, которое индуци­руется расслабляющим фактором эндотелия.

 

Регуляция сокращений гладких мышц.Среди гладкомышечных клеток можно выделить несколько групп по механизму возбуждения.

Гладкие мышцы с миогенной (спонтанной) актив­ностью. Во многих гладких мышцах кишечника (например, толстой кишки) одиночное сокращение, вызванное потенциалом действия, продолжается не­сколько секунд. Следовательно, сокраще­ния с интервалом менее 2 с накладываются друг на друга, а при частоте выше 1 Гц сливаются в более или менее гладкий тетанус (тетанообразный “то­нус”), который отличается от тетануса скелетных мышц только низкой частотой сливаю­щихся одиночных сокращений и необходимых для этого потенциалов действия. Природа такого “то­нуса” -миогенная; в отличие от скелетной мускула­туры, гладкие мышцы кишечника, мочеточника, же­лудка и матки способны к спонтанным тетанообразным сокращениям после изоляции и денервации и даже при блокаде нейронов интрамуральных ган­глиев. Следовательно, их потенциалы действия не обусловлены передачей к мышце нервных импуль­сов, т. е. у них не нейрогенное, а миогенное проис­хождение (как в сердце).

Миогенное возбуждение возникает в клетках – ритмоводителях (пейсмекерах), идентичных другим мышечным клеткам по структуре, но отличающихся электрофизиологическими свойствами. Препотенциалы, или пейсмекерные потенциалы, деполяризуют их мембрану до порогового уровня, вызывая потенциал действия. Из-за поступления в клетку катионов (главным образом Са2+) мембрана деполяризуется до нулевого уровня и даже на несколько миллисекунд меняет полярность до + 20 мВ. За реполяризацией следует новый препотенциал, обе­спечивающий генерирование следующего потенциа­ла действия. Интервал между потенциалами дейст­вия пейсмекера зависит как от скорости деполяри­зации, вызываемой препотенциалами, так и от раз­ницы между исходным мембранным и пороговым потенциалами.При нанесе­нии напрепарат мышцы толстой кишки ацетилхолина пейсмекерные клетки деполяризуются до околопорогового уровня, и часто­та потенциалов действия возрастает. Вызываемые ими сокращения сливаются до почти гладкого тета­нуса. Чем выше частота потенциалов действия, тем слитнее тетанус и тем сильнее сокращение, возни­кающее в результате суммации одиночных сокра­щений. И напротив, нанесение на тот же препарат норадреналина гиперполяризует мембрану и в ре­зультате снижает частоту потенциалов действия и величину тонуса. Таковы механизмы модуляции спонтанной активности пейсмекеров вегетативной нервной системой и ее медиаторами.

Возбуждение распространяется по гладкой мыщце через особые «щелевые контакты» (нексусы) между плазматическими мембранами сопредельных мышечных клеток. Эти области с низким электри­ческим сопротивлением обеспечивают электротони­ческую передачу деполяризации от возбужденных клеток к соседним. Как только местный ток, проте­кающий через нексус, деполяризует мембрану до порогового уровня, возникает потенциал действия, который в свою очередь вызывает возбуждение в других электротонически сопряженных клетках. Таким образом, активность распространяется по всей мышце со скоростью около 5-10 см/с, и мышца ведет себя как единая функциональная единица, почти синхронно воспроизводя активность своего пейсмекера.

Таким образом, среди гладкомышечных клеток есть фоновоактивные — водители ритма (пейсмекеры). Непосредственной причиной их ПД является спонтанная медленная деполяризация мем­браны (препотенциал). Эти периодические ПД пейсмекерных клеток, распространяясь по прочей массе мышечных клеток (со ско­ростью 5—10 см/с), создают миогенный тонус гладких мышц.

− Другие гладкомышечные клетки, будучи растяжимыми и пластичными, как и все гладкомышечные ткани, при определенной степени растяжения способны возбуждаться (деполяризоваться) и отвечать на это растя­жение сокращением. После обусловленного эластическими свойствами начального подъ­ема напряжения гладкая мышца развивает пластическую податливость, и ее напряжение падает постепенно — вначале быстро, потом медленнее.

Таким образом, пластичность объясняет характерное свойство гладкой мышцы: она способна быть расслабленной в укороченном и в растянутом состояниях. Благодаря плас­тичности гладкой мускулатуры стенок моче­вого пузыря давление внутри него относи­тельно мало изменяется при значительной градации наполнения, и лишь при более зна­чительном депонировании мочи давление, а следовательно, и растяжение стенок резко возрастает и происходит сокращение мышц детрузора — эвакуация мочи даже в тех слу­чаях, когда его нервная регуляция нарушена в результате повреждения спинного мозга.. Этот феномен лежит в основе периферичес­кой саморегуляции тонуса гладких мышц не­которых кровеносных сосудов, лимфангионов, мочевого пузыря и других органов.

− Третий вид гладкомышечных клеток (цилиарное тело, радужка глаза, артерии и семен­ные протоки) имеет более мощную (плотную) иннервацию и слабое развитие межклеточных контактов. Спонтанная активность этих мышц обычно слабая или её вообще нет. Тонус этих мышц и его колебания имеют в основном нейрогенную природу. Гладкие мышцы иннервируются вегетативны­ми нервами, многие имеют парасимпатичес­кие и симпатические входы. Нервные влия­ния регулируют активность висцеральных гладкомышечных образований.

Функции висцеральных глад­ких мышц управляются также нейрона­ми интрамуральных нервных сплетений, не только перерабатывающих центробежную импульсацию, но и формирующих собствен­ные автономные команды. При наличии чув­ствительных, вставочных и моторных нейро­нов в интрамуральных узлах осуществляется рефлекторная деятельность. Так, мускулатура кишечного тракта функционирует под влия­нием импульсов из ауэрбахова и мейснерова сплетений, заложенных в кишечной стенке. Эта особенность делает возможной автомати­зированную, четко организованную мотор­ную функцию кишечника.

Эффектором вегетативных входов чаще является пучок неисчерченных мышечных клеток, а не отдельная мышечная клетка. Плотность иннервации различна в разных гладких мышцах и даже в соседних участках одной и той же мышцы.

– Конец работы –

Эта тема принадлежит разделу:

Физиология возбудимых тканей

Значение изучения раздела... Раздел Физиология возбудимых тканей изучается первым в курсе нормальной физиологии Возбудимые ткани играют важную...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГЛАДКИЕ МЫШЦЫ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая физиология возбудимых тканей
Раздражимость— способность живой мате­рии активно изменять характер своей жизне­деятельности при действии раздражителя. Ре­акции отдельных клеток, тканей на действие раздражителя м

Структурно-функциональная организация клеточной мембраны
По определению Робертсона, клетку можно рассматривать как трифазную систему, которая состоит из нуклео-цитоплазматического матрикса, мембранной фазы и внешней фазы. На мембраны приходится около 2/3

Ионные каналы
Ионные каналы образованы белками, они весьма разнообразны по устройству и меха­низму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние актив

Электрические явления в ТКАНях
1.2.1.Открытие «животного электричества» В конце XVIII в. (1786 г.) профессор анато­мии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целена

Локальный потенциал (локальный ответ)
При раздражении возбудимой ткани не всегда возникает ПД. В частности, если сила раздражителя мала, деполяризация не достигнет критического уровня, естественно, не возникнет импульс­ное — распростра

ЗАКОНЫ РАЗДРАЖЕНИЯ ВОЗБУДИМЫХ ТКАНЕЙ
Ответная реакция возбудимой ткани на действие раздражителя зависит от двух групп факторов: от возбудимости возбудимой ткани и от характеристик раздражителя. Возбудимость клетки изменяется

ТЕСТЫ 1-2 уровня ДЛЯ САМОКОНТРОЛЯ ЗНАНИЙ ПО теме: Общая физиология возбудимых тканей
  1.Изменится ли величина потенциала покоя, если внутри нервной клетки искусственно увеличивать на 30% концентрацию ионов К+? А. потенциал покоя снизится до 0

ФИЗИОЛОГИЯ НЕРВНЫХ ВОЛОКОН И НЕРВОВ
2.1.1. Структура нервного волокна Нервные волокна представляют собой от­ростки нейронов, с помощью которых осу­ществляется связь между нейронами, а также

Высокая лабильность.
2.1.7. Аксонный транспорт Наличие у нейрона отростков, длина которых может достигать 1 м (например, аксоны, иннервирующие мускулатуру конечностей), со­зда

Функциональная роль аксонного транс­порта.
− Антеградный и ретроградный транс­порт белков и других веществ необходимы для поддержания структуры и функции аксо­на и его пресинаптических окончаний, а так­же для таких процессов, как аксо

Синаптическая передача возбуждения
Синапс (греч. synapsis — соединение) — специализированная структура, обеспечи­вающая передачу возбуждающих или тормоз­ных влияний между двумя возбудимыми клетками. Через синапс нар

ТЕСТЫ 1-2 уровня ДЛЯ САМОКОНТРОЛЯ ЗНАНИЙ ПО ТЕМЕ: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В НЕРВНЫХ ВОЛОКНАХ И СИНАПСАХ
1.Накопление избыточного количества ацетилхолина в нервно-мышечном синапсе приводит: А. к усилению мышечного сокращения В. к ослаблению мышечного сокращения С. мышечное с

ФИЗИОЛОГИЯ МЫШц
−−−−−−−−−−−−−−−−−−−−−−−−−−−−&

СКЕЛЕТНЫЕ МЫШЦЫ
Взаимодействие человека с внешней средой не может осуществляться без сокращений его мышц. Производимые при этом движения необходимы как для выполнения простейших манипуляций, так и для выражения са

ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ нервно-мышечной системы у детей
Нервно-мышечная система осуществляет двигательную функцию и является одной из важнейших систем организма, выполняющей роль основного средства общения организма с окружающей средой. В ходе

Изменения нервно-мышечной системы в процессе старения
4.2. . Изменения нервных проводников, периферических синапсов и рецепторов в процессе старения В нервных стволах и ганглиях в процессе ста­рения развивают

Физиологические закономерности трудовой деятельности человека
В основе различных видов трудовой деятельности лежит установ­ка, на базе которой в центральной нервной системе (ЦНС) созда­ется определенная программа действий, реализующаяся в целена­правле

Изменения физиологических функций при физическом труде
Физическое напряжение вызывает изменения практически во всех системах организма человека, в особенности, сердечно-сосудистой и дыхательной. Выраженность этих изменений служит мерой реакции о

Изменения физиологических функций при умственном труде.
Умственный труд, в отличие от физического, характеризуется менее выраженными изменениями функций в организме. В то же время показатели деятельности нервной, эндокринной, сер

Физиологическая характеристика функционального состояния человека в процессе монотонного труда.
Монотонный(однообраз­ный) труд характеризуется либо выполнением на протяжении рабо­чего дня простых операций, либо работой с сенсорной или ум­ственной нагрузкой низкой или средней

Гипокинезия человека в процессе трудовой деятельности
Типичной чертой профессиональной деятельности большинства работников являются низкие физическая активность и, соответственно, затраты энергии на протяжении ра­бочего дня. Преобладающими стали работ

Физиологические механизмы формирования трудовых навыков
Процесс трудового обучения и формирования наиболее экономич­ных (с точки зрения затрат энергии) и рациональных рабочих дей­ствий проходит три этапа развития, каждый из которых имеет свою физиологич

Работоспособность и утомление
Работоспособность — это свойство человека на протяжении дли­тельного времени и с определенной эффективностью выполнять максимальное количество физической или умственной работы. На протяжении рабоче

Физиологические основы рациональной организации трудовых процессов
Рациональные режимы труда и отдыха. Работоспособность чело­века определяется условиями его работы и отдыха. За время от­дыха физиологические показатели, изменившиеся в процессе работы, должны возвр

Физиологические основы физической культуры и спорта
Спортивная физиология — один из разделов физиологии человека, основным содержание которого является изучение механизмов фи­зиологических функций в процессе выполнения различных

Физическая работоспособность в особых условиях окружающей среды
7.1. Влияние температуры и влажности воздуха на физическую работоспособность. Во время интенсивной и длительной физической работы теплопродукция в мышцах

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги