рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ФИЗИОЛОГИЯ НЕРВНЫХ ВОЛОКОН И НЕРВОВ

ФИЗИОЛОГИЯ НЕРВНЫХ ВОЛОКОН И НЕРВОВ - раздел Образование, Физиология возбудимых тканей 2.1.1. Структура Нервного Волокна ...

2.1.1. Структура нервного волокна

Нервные волокна представляют собой от­ростки нейронов, с помощью которых осу­ществляется связь между нейронами, а также нейронов с исполнительными клетками. В состав нервного волокна входят осевой ци­линдр (нервный отросток) и глиальная обо­лочка. По взаимоотношению осевых цилинд­ров с глиальными клетками выделяют два типа нервных волокон: безмиелиновые и миелиновые. Оболочку безмиелиновых волокон образуют шванновские клетки (леммоциты). При этом осевые цилиндры прогибают кле­точную оболочку леммоцитов и погружаются в них. Клеточная мембрана обычно полнос­тью окружает каждый осевой цилиндр и смы­кается над ним, образуя сдвоенную мембрану (мезаксон).

Оболочку миелиновых волокон образуют в периферической нервной системе также шванновские клетки, а в ЦНС — олигодендроциты. В отличие от безмиелиновых воло­кон в миелиновых волокнах мезаксон удли­няется и спирально закручивается вокруг осевого цилиндра, образуя слой миелина тол­щиной от долей мкм до 10 мкм (липидный футляр) вокруг осевого цилиндра. Миелиновая оболочка через равные участки (0,5— 2,0 мм) прерывается, образуя свободные от миелина небольшие участки — узловые пере­хваты Ранвье. Протяженность перехватов в волокнах периферической нервной системы находится в пределах 0,25—1,0 мкм, в волок­нах ЦНС их длина может достигать 14 мкм. Участки волокон между узловыми перехвата­ми называются межузловыми сегментами, они образованы слоем миелина. Основную часть миелина (78 % сухой массы) составля­ют липиды, в них на долю фосфолипидов приходится 42 %, цереброзидов — 28 %, хо­лестерина — 25 %. Несмотря на метаболичес­кую инертность миелина (особенно по об­новлению холестерина), поддержание це­лостности его структуры требует затраты энергии и нарушение снабжения олигодендроцитов кислородом и питательными веще­ствами быстро вызывает деструкцию миели­на. Одной из основных функций глиальной оболочки нервных волокон является изолирующая функция, способствующая лучшему проведению биопотенциалов по отросткам нейронов.

2.1.2.Классификация нервных волокон

Наиболее распространена классификация по Дж.Эрлангеру и Х.Гассеру (1937), в которой волокна разделяют на три типа: А, В и С (табл.3). Волокна типа А и В являются миелиновыми, типа С — безмиелиновыми. Во­локна А делят на 4 подгруппы: α, β, γ, δ. В пе­риферической нервной системе к волокнам Аα относятся афферентные волокна от механорецепторов кожи, мышечных и сухожиль­ных рецепторов, а также эфферентные во­локна к скелетным мышцам. К Аβ принадле­жат афферентные волокна от кожных рецеп­торов прикосновения и давления, от части мышечных и висцеральных рецепторов. Аγ представляют собой эфферентные волокна, через которые регулируется активность мы­шечных рецепторов. К Аδ относят афферент­ные волокна от части тактильных, темпера­турных и болевых, а также суставных рецеп­торов. К волокнам типа В принадлежат преганглионарные волокна вегетативной нерв­ной системы. К волокнам типа С относят постганглионарные волокна вегетативной нерв­ной системы, афферентные волокна от неко­торых болевых (вторичная боль), тепловых и висцеральных рецепторов.

 

Таблица 3. Типы волокон в нервах млекопи­тающих (по Эрлангеру—Гассеру)

 

Тип волокон   Диаметр волокна, мкм   Скорость проведения возбуждения, м/с   Длительность абсолютного рефракторного периода, мс  
Аa   12-20   70-120   0,4-1,0  
Аb   5-12   30-70      
Аg   3-6   15-30      
Аd   2-5   12-30    
В   1-3   5-12   1,2  
С   0,3-1,3   0,5-2,3    

 

Из данных, представленных в табл.3, видно, что средний диаметр каждого типа во­локна снижается от типа А до С (каждый примерно в 2 раза по отношению к предыду­щему). Соответственно этому снижается и скорость проведения возбуждения. Низкая скорость проведения нервного импульса в волокнах типа С связана с особенностями проведения возбуждения в безмиелиновых волокнах. Лабильность также уменьшается от волокон Аα до С и находится в обратной за­висимости от продолжительности фазы абсо­лютной рефрактерности. Возбудимость тоже уменьшается от волокон Аα (наибольшая возбудимость) к волокнам С (наименьшая возбудимость). Например, пороговая сила электрического тока у волокон С в 30—50 раз больше, чем у волокон Аα. Исследование факторов, блокирующих нервную проводи­мость, показало, что к давлению наиболее чувствительны волокна А, к кислородному голоданию (гипоксии) — волокна В, к мест­ным анестетикам — волокна С.

Нервные волокна имеют две основные функции — проведение возбуждения и транспорт веществ, обеспечивающих трофи­ческую функцию.

2.1.3.Механизм проведения возбуждения по нервному волокну

Биопотенциалы могут быть локальными (местными), распространяющимися с декре­ментом (затуханием) на расстояние, не пре­вышающее 1—2 мм, и импульсными (ПД), распространяющимися без декремента по всей длине волокна — на несколько десятков сантиметров, например от мотонейронов спинною мозга по всей длине нервного во­локна до мышечных волокон конечностей с учетом длины самой конечности.

Распространение локальных потенциа­лов.Локальные потенциалы (препотенциал, рецепторный потенциал, возбуждающий постсинаптический потенциал — ВПСП) из­меняют мембранный потенциал покоя, как правило, в сторону деполяризации в резуль­тате входа в клетку Na+ согласно электрохи­мическому градиенту. В результате этого между участком волокна, в котором возник локальный потенциал, и соседними участка­ми мембраны формируется электрохимичес­кий градиент, вызывающий передвижение ионов. В частности, вошедшие в клетку ионы Na+ начинают перемещаться в соседние участки, а ионы Na+ на наружной поверхнос­ти клетки движутся в противоположном на­правлении. В итоге поляризация мембраны соседнего участка уменьшится. Фактически это означает, что локальный потенциал из первичного очага распространился на сосед­ний участок мембраны. Он затухает на рас­стоянии 1—2 мм от очага первичной деполя­ризации, что связано с отсутствием ионных управляемых каналов на данном участке мембраны или неактивацией управляемых ионных каналов, продольным сопротивлени­ем цитоплазмы волокна и шунтированием тока во внеклеточную среду через каналы утечки мембраны.

Если возникшая деполяризация мембраны не сопровождается изменением проницае­мости потенциалзависимых натриевых, каль­циевых и калиевых каналов, такую деполяри­зацию называют электротонической. Элек­тротоническое распространение возбужде­ния — физический механизм, оно характерно для тех фрагментов мембран возбудимых кле­ток, где нет потенциалзависимых ионных ка­налов. Такими участками являются, напри­мер, большая часть мембраны дендритов нервных клеток, межперехватные промежут­ки в миелиновых нервных волокнах. Если местный потенциал (рецепторный или ВПСП), распространяясь электротонически, достигает участков мембраны, способных ге­нерировать ПД (аксонный холмик, перехва­ты Ранвье, часть мембраны дендритов и, воз­можно, сомы), но его амплитуда при этом не достигнет критического уровня деполяриза­ции, то такой потенциал называют препотенциалом. В его возникновении и распростра­нении частично участвуют потенциалзависимые ионные каналы, однако при этом нет ре­генеративной (самоусиливающейся) деполя­ризации, характерной для ПД. Поэтому распространение такого потенциала происходит с затуханием амплитуды. Если локальный по­тенциал достигает участков мембраны, спо­собных генерировать ПД, и его амплитуда выходит на критический уровень деполяриза­ции, формируется ПД, который распростра­няется по всей длине нервного волокна без затухания.

Эффективность электротонического рас­пространения биопотенциалов зависит от физических свойств нервного волокна — со­противления и емкости его мембраны, со­противления цитоплазмы. Электротоничес­кое проведение в нервном волокне улучшает­ся при увеличении его диаметра, что связа­но с уменьшением сопротивления цитоплаз­мы, а также при миелинизации волокна, уве­личивающей сопротивление мембраны (до 105 Ом/см2) и уменьшающей ее емкость (до 0,005 мкФ/см2). Эффективность электрото­нического проведения характеризует посто­янная длины мембраны (λm). Это расстоя­ние, на которое может электротонически распространиться биопотенциал, пока его амплитуда не уменьшится до 37 % от исход­ной величины. Постоянная длины для ло­кальных потенциалов реально не превышает 1 мм, и их амплитуда затухает на расстоянии 1—2 мм от места возникновения.

Для передачи возбуждения на большие расстояния необходимо формирование ПД. В его распространении, кроме электротони­ческого механизма, существенная роль при­надлежит механизму регенеративной деполя­ризации, позволяющей сохранить амплитуду ПД на всем пути его следования.

Проведение потенциала действия.Обязательным условием проведения нервного импульса является на­личие на всем протяжении или в ограничен­ных, но повторяющихся участках волокна потенциалзависимых ионных каналов, ответ­ственных за формирование ПД. В распро­странении ПД можно выделить два этапа: этап электротонического проведения, обу­словленный физическими свойствами нерв­ного волокна, и этап генерации ПД в новом участке на пути его движения, обусловлен­ный реакцией ионных каналов. В зависимос­ти от расположения и концентрации ионных каналов в мембране волокна возможно два типа проведения ПД: непрерывный и сальтаторный (скачкообразный).

Непрерывное распространение ПД осу­ществляется в безмиелиновых волокнах типа С, имеющих равномерное распределение по­тенциалзависимых ионных каналов, участву­ющих в генерации ПД. Проведение нервного импульса начинается с этапа электротони­ческого распространения возникшего ПД. Амплитуда ПД нервного волокна (мембран­ный потенциал + инверсия) составляет около 90 мВ, постоянная длины мембраны (λm) в безмиелиновых волокнах равна 0,1—1,0 мм.

Поэтому ПД, распространяясь на этом рас­стоянии как электротонический потенциал и сохранив как минимум 37 % своей амплиту­ды, способен деполяризовать мембрану до критического уровня и генерировать на всем протяжении новые ПД (рис.5). При этом на этапе электротонического распростране­ния нервного импульса ионы движутся вдоль волокна между деполяризованным и поляри­зованным участками, обеспечивая проведе­ние возбуждения в соседние участки волок­на. Реально при неповрежденном нервном волокне этап чисто электротонического рас­пространения ПД (вдоль мембраны) предель­но мал, так как потенциалзависимые каналы имеются в непосредственной близости друг от друга и, естественно, — от возникшего по­тенциала действия и наблюдается только до достижения деполяризации, равной 50 % Екр. Далее включается перемещение ионов в клетку (нервное волокно) и из клетки за счет активации ионных каналов.

При формировании нового ПД в соседнем участке в фазе деполяризации возникает мощный ток ионов натрия в клетку вследст­вие активации натриевых каналов, приводя­щий к регенеративной (самоусиливающейся) деполяризации. Этот ток обеспечивает фор­мирование нового ПД той же амплитуды, представляющий собой, как обычно, сумму двух величин — мембранного потенциала покоя и инверсии. В связи с этим проведение ПД осуществляется без декремента (без сни­жения амплитуды). Таким образом, непре­рывное распространение нервного импульса идет через генерацию новых ПД по эстафете, когда каждый участок мембраны выступает сначала как раздражаемый (при поступлении к нему электротонического потенциала), а затем как раздражающий (после формирования в нем нового ПД).

 

Сальтаторный ( прерывистый, скачкообразный ) тип проведения нервно­го импульса осуществляется в миелиновых волокнах (типы А и В), для которых харак­терна концентрация потенциалзависимых ионных каналов только в небольших участ­ках мембраны (в перехватах Ранвье), где их плотность достигает 12 000 на 1 мкм2, что примерно в 100 раз выше, чем в мембранах безмиелиновых волокон. В области миелино­вых муфт (межузловых сегментов), обладаю­щих хорошими изолирующими свойствами, потенциалзависимых каналов почти нет, и мембрана осевого цилиндра там практически невозбудима. В этих условиях ПД, возник­ший в одном перехвате Ранвье, электротонически (вдоль волокна, без участия ионных каналов) распространяется до соседнего перехвата, деполяризуя там мембрану до кри­тического уровня, что приводит к возникно­вению нового ПД, т.е. возбуждение прово­дится скачкообразно (рис. 6). Постоянная длина мембраны миелинового волокна до­стигает 5 мм. Это значит, что ПД, распро­страняясь электротонически на этом рассто­янии, сохраняет 37 % своей амплитуды (около 30 мВ) и может деполяризовать мем­брану до критического уровня (пороговый потенциал в перехватах Ранвье равен около 15 мВ). Поэтому в случае повреждения бли­жайших на пути следования перехватов Ран­вье потенциал действия может электротони­чески возбудить 2—4-й и даже 5-й перехваты.

Сальтаторное проведение ПД по миелиновым волокнам является эволюционно более поздним механизмом, возникшим впервые у позвоночных. Оно имеет два важных преиму­щества по сравнению с непрерывным проведением возбуждения. Во-первых, оно более экономично в энергетическом плане, т.к. воз­буждаются только перехваты Ранвье, площадь которых менее 1 % мембраны, и, следователь­но, надо меньше энергии для восстановле­ния трансмембранных градиентов Na+ и К+, уменьшающихся в процессе формирования ПД. Во-вторых, возбуждение проводится с большей скоростью (см. табл.3), чем в безмиеликовых волокнах, так как возникший ПД на протяжении миелиновых муфт распростра­няется электротонически, что в 107 раз бы­стрее, чем скорость непрерывного проведения ПД в безмиелиновом волокне.

2.1.4. Проведение возбуждения в нервных стволах

В периферической нервной системе волокна объединены с помощью соединительнотканных оболочек в нервные стволы (нервы). В одном нерве могут быть тысячи нервных волокон: например, в срединном и мышечно-кожном нервах имеется 27—37 тыс. нерв­ных волокон. Волокна в нервах могут быть миелиновыми и безмиелиновыми, афферентными и эфферентными. В естественных ус­ловиях каждое волокно нерва возбуждается от своего источника (например, эфферентное — от аксонного холмика, афферентное — от рецептора), и ПД в них проводятся асин­хронно. Кроме того, чувствительные и двига­тельные волокна проводят импульсы в про­тивоположных направлениях. Суммарная электрическая активность нерва создается электрической активностью составляющих его волокон и зависит от числа возбужден­ных волокон, степени шунтирования мест­ных токов невозбужденными волокнами, синхронности проведения ПД в волокнах. В связи с этим анализ суммарной электри­ческой активности нерва (нейрограммы) представляет трудную задачу.

В лабораторных условиях при монополяр­ном отведении, когда один электрод распо­ложен на неповрежденном участке нерва, а второй — на поврежденном (деполяризованном) участке, можно зафиксировать суммар­ный монофазный ПД нерва и его дисперсию (расслоение) во времени. Если отводящий электрод расположен близко (до 3 мм) к раз­дражающему, через который подают сильный одиночный стимул, то реги­стрируется суммарный ПД нерва, напоми­нающий по форме ПД отдельного нервного волокна, но растянутый по времени. Суммарный ПД нерва в отличие от ПД отдельного волокна не подчиняется зако­ну «все или ничего». Это означает, что при увеличении силы раздражения увеличивается число возбужденных нервных волокон: в воз­буждение вовлекаются, кроме Аα-волокон, менее возбудимые Аβ-, Аγ-, Аδ-, В-волокна и, наконец, наименее возбудимые С-волокна (закон силовых отношений — увеличение ответной реакции с увеличением силы раздражения).

Если отводящий электрод расположен на достаточном удалении от раздражающего электрода (до 80—100 мм), то фиксируется расслоение суммарного ПД нерва на несколько пиков соответственно типам нервных волокон. Это связано с неодинаковой скоростью проведе­ния ПД в разных волокнах нерва: сначала до места регистрации доходят нервные импуль­сы по быстропроводящим Аα-волокнам, через некоторое время по Аβ, затем по Аγ и т.д. Позже всего до места регистрации дохо­дят ПД по С-волокнам.

Если отведение биполярное и оба отводя­щих электрода расположены на неповреж­денных участках нерва и недалеко от раздра­жающего электрода (чтобы избежать диспер­сии потенциала, то при силь­ном одиночном стимуле фиксируется двух­фазный суммарный потенциал. Возникновение этих фаз связано с тем, что, когда волна возбуждения находится под пер­вым (ближайшим к месту раздражения) отво­дящим электродом, этот участок становится электроотрицательным по отношению к по­коящемуся участку под вторым отводящим электродом и луч осциллографа отклоняется вверх. Когда же волна возбуждения доходит до второго электрода, а под первым электро­дом мембраны волокон уже реполяризованы, то луч осциллографа отклоняется в противо­положную сторону — вниз.

2.1.5. Законы проведения возбуждения по нервным волокнам

− Закон двустороннего проведения возбуждения.Прямые доказательства этой закономерности были получены во второй половине XIX в. А.И.Бабухиным и Э.Дюбуа-Реймоном. Если стимул действует на средний участок изоли­рованного нерва (Дюбуа-Реймон), то распро­странение возбуждения регистрируется как в проксимальном, так и в дистальном участках нерва. В опытах на электрическом органе у рыб, иннервируемом разветвлениями аксона одного нейрона, было показано (А.И.Бабухин), что при раздражении перерезанной ве­точки аксона возбуждение распространяется в необычном центростремительном направ­лении, передается на другие разветвления ак­сона, по которым идет в центробежном на­правлении (так называемый аксон-рефлекс). В условиях организма двустороннее проведе­ние показано в аксонном холмике; возник­ший в этом месте ПД распространяется не только в аксон, но и в тело нейрона. На уровне целого организма аксоны нервных клеток проводят возбуждение только в одном направлении: от рецепторного отдела рефлекторной дуги к исполнительному органу (эффектору). Роль выпрямителя в рефлекторной дуге выполняют химические синапсы.

− Закон изолированного проведения возбуждения. В обычных условиях деятельности нервного ствола (возбуждение только части нервных волокон, асинхронное распространение в них ПД) проведение возбуждения в составля­ющих его волокнах происходит практически изолированно. Это обусловлено тем, что петли тока в межклеточной жидкости ствола, имеющей низкое сопротивление, почти не проникают в невозбужденные волокна нерва из-за большого сопротивления их оболочек. Изолированное проведение импульсов по нервным волокнам обеспечивает точное аф­ферентное и эфферентное влияния функцио­нально разнородных волокон нерва. Однако при одновременном раздражении значитель­ного количества волокон в межклеточной жидкости ствола возникает достаточно силь­ный внешний ток, способный возбудить не­активные (прежде всего высоковозбудимые) волокна и таким образом увеличить количе­ство функционирующих нервных волокон в нерве, его эфферентное или афферентное влияние.

− Закон физиологической непрерывности нерва.Обязательным условием проведения возбуждения по нервному волокну является анатомическая и функциональная целость возбудимой мембраны осевого цилиндра. Поэтому не только перерезка нерва, но и любое воздействие, нарушающее целость мембраны осевого цилиндра, например перевязка нерва, чрезмерное натяжение нервных волокон, создают непроводимость.

Возможность функционального блока проведения возбуждения возможна при морфологической целостности волокон. Непроводимость наступает при воздействиях, нарушающих генерацию нервного импульса. Так, чрезмерное охлаждение или согревание, прекращение кровоснабжения, различные химические агенты, в частности местные обезболивающие — новокаин, кокаин, дикаин, прекращают проведение по нерву. Н.Е.Введенский (1901) показал, что при действии различных факто­ров на нерв (кокаина, хлороформа, фенола, хлористого калия, сильного фарадического тока) в нем сначала возникает транс­формация ритма проводимого возбуждения (блокируется проведение высокочастотных потенциалов действия, и проводятся только низкочастотные ПД), а в дальнейшем может возникать полный блок проведения нервных импульсов — участок парабиоза. В этом участке возникает длительная деполяризация мембраны волокон, которая в результате за­крытия инактивационных h-ворот в натрие­вых каналах сначала затрудняет генерацию ПД (уменьшается его амплитуда, увеличива­ется длительность, затягивается фаза абсо­лютной рефрактерности), а в дальнейшем, если инактивация натриевых каналов превы­сит 50 %, приводит к полной невозбудимости этого участка нервного волокна. Для возник­новения блока в проведении возбуждения протяженность парабиотического участка должна превысить постоянную длину мем­браны (λm), иначе ПД может распростра­ниться через этот участок электротонически. Нарушение физиологичес­кой непрерывности нервных волокон возни­кает при действии анестетиков, электричес­кого тока, при гипоксии, воспалении, охлаж­дении. После прекращения действия этих факторов проведение возбуждения по волок­нам нерва восстанавливается. Однако, при углублении и усилении действия вызвавшего парабиоз агента обратимые изменения могут переходить в необратимое нарушение жизнедеятельности — смерть.

2.1.6. Особенности проведения возбуждения в нервных волокнах

Большая скорость проведения возбужде­ния. Скорость проведения ПД в различных типах волокон нерва равна 0,5—120 м/с. Она значительно выше в миелиновых волокнах в связи с сальтаторным типом проведения ПД, а среди миелиновых волокон прямо пропорциональна диаметру волокна. Скорость проведения воз­буждения в миелиновых нервных волокнах значительно выше, чем в других удлиненных возбудимых структурах, — в гладких миоцитах (0,02—0,10 м/с), рабочих кардиомиоцитах (около 1 м/с), и только в миоцитах проводя­щей системы сердца и скелетных миоцитах скорость проведения ПД (2—5 м/с) достигает величин распространения ПД в низкоско­ростных нервных волокнах (тип С и В). Передача возбуждения по нервным волокнам является наиболее скоростным из известных способов передачи информации на значи­тельные расстояния в организме. Для сравне­ния отметим, что скорость передачи гумо­ральных влияний ограничена скоростью кровотока, которая равна от 0,5 мм/с в капилля­рах до 0,25 м/с в аорте (средняя скорость).

Малая утомляемость нервного волокна. При нормальном кровоснабжении (доставке кислорода и питательных веществ) проводя­щий возбуждение нерв практически неутом­ляемость. «Изумительно долгая неутомляемость нерва» впервые была показана Н.Е.Введен­ским (1883): в его опытах нерв сохранял спо­собность к проведению возбуждения в тече­ние 6—8 ч непрерывного раздражения не­сильными токами в условиях наличия кисло­рода в окружающей среде и поддержания влажного состояния нерва. Это обусловлено тем, что при проведении ПД по нервным во­локнам используется всего лишь одна милли­онная часть запасов трансмембранных ион­ных градиентов и, следовательно, нужны не­большие количества АТФ для восстановле­ния (например, посредством Nа/К-насоса) ионных градиентов. Об энергетической эко­номности проведения возбуждения свиде­тельствует и низкая величина теплопро­дукции в работающем нерве, отражающая степень окислительного фосфорилирования в митохондриях. Ее величина в нерве (0,06 кал/г ткани в течение 1 ч) примерно в 16 раз меньше, чем на соответствующую еди­ницу массы в целом организме в условиях ос­новного обмена, и в миллион раз меньше, чем в работающей мышце.

– Конец работы –

Эта тема принадлежит разделу:

Физиология возбудимых тканей

Значение изучения раздела... Раздел Физиология возбудимых тканей изучается первым в курсе нормальной физиологии Возбудимые ткани играют важную...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ФИЗИОЛОГИЯ НЕРВНЫХ ВОЛОКОН И НЕРВОВ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая физиология возбудимых тканей
Раздражимость— способность живой мате­рии активно изменять характер своей жизне­деятельности при действии раздражителя. Ре­акции отдельных клеток, тканей на действие раздражителя м

Структурно-функциональная организация клеточной мембраны
По определению Робертсона, клетку можно рассматривать как трифазную систему, которая состоит из нуклео-цитоплазматического матрикса, мембранной фазы и внешней фазы. На мембраны приходится около 2/3

Ионные каналы
Ионные каналы образованы белками, они весьма разнообразны по устройству и меха­низму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние актив

Электрические явления в ТКАНях
1.2.1.Открытие «животного электричества» В конце XVIII в. (1786 г.) профессор анато­мии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целена

Локальный потенциал (локальный ответ)
При раздражении возбудимой ткани не всегда возникает ПД. В частности, если сила раздражителя мала, деполяризация не достигнет критического уровня, естественно, не возникнет импульс­ное — распростра

ЗАКОНЫ РАЗДРАЖЕНИЯ ВОЗБУДИМЫХ ТКАНЕЙ
Ответная реакция возбудимой ткани на действие раздражителя зависит от двух групп факторов: от возбудимости возбудимой ткани и от характеристик раздражителя. Возбудимость клетки изменяется

ТЕСТЫ 1-2 уровня ДЛЯ САМОКОНТРОЛЯ ЗНАНИЙ ПО теме: Общая физиология возбудимых тканей
  1.Изменится ли величина потенциала покоя, если внутри нервной клетки искусственно увеличивать на 30% концентрацию ионов К+? А. потенциал покоя снизится до 0

Высокая лабильность.
2.1.7. Аксонный транспорт Наличие у нейрона отростков, длина которых может достигать 1 м (например, аксоны, иннервирующие мускулатуру конечностей), со­зда

Функциональная роль аксонного транс­порта.
− Антеградный и ретроградный транс­порт белков и других веществ необходимы для поддержания структуры и функции аксо­на и его пресинаптических окончаний, а так­же для таких процессов, как аксо

Синаптическая передача возбуждения
Синапс (греч. synapsis — соединение) — специализированная структура, обеспечи­вающая передачу возбуждающих или тормоз­ных влияний между двумя возбудимыми клетками. Через синапс нар

ТЕСТЫ 1-2 уровня ДЛЯ САМОКОНТРОЛЯ ЗНАНИЙ ПО ТЕМЕ: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В НЕРВНЫХ ВОЛОКНАХ И СИНАПСАХ
1.Накопление избыточного количества ацетилхолина в нервно-мышечном синапсе приводит: А. к усилению мышечного сокращения В. к ослаблению мышечного сокращения С. мышечное с

ФИЗИОЛОГИЯ МЫШц
−−−−−−−−−−−−−−−−−−−−−−−−−−−−&

СКЕЛЕТНЫЕ МЫШЦЫ
Взаимодействие человека с внешней средой не может осуществляться без сокращений его мышц. Производимые при этом движения необходимы как для выполнения простейших манипуляций, так и для выражения са

ГЛАДКИЕ МЫШЦЫ
В организме высших животных и человека гладкие (неисчерченные) мышцы находятся во внутренних органах, сосудах и коже. Их активность не управляется произвольно, функции многих из них слабо контролир

ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ нервно-мышечной системы у детей
Нервно-мышечная система осуществляет двигательную функцию и является одной из важнейших систем организма, выполняющей роль основного средства общения организма с окружающей средой. В ходе

Изменения нервно-мышечной системы в процессе старения
4.2. . Изменения нервных проводников, периферических синапсов и рецепторов в процессе старения В нервных стволах и ганглиях в процессе ста­рения развивают

Физиологические закономерности трудовой деятельности человека
В основе различных видов трудовой деятельности лежит установ­ка, на базе которой в центральной нервной системе (ЦНС) созда­ется определенная программа действий, реализующаяся в целена­правле

Изменения физиологических функций при физическом труде
Физическое напряжение вызывает изменения практически во всех системах организма человека, в особенности, сердечно-сосудистой и дыхательной. Выраженность этих изменений служит мерой реакции о

Изменения физиологических функций при умственном труде.
Умственный труд, в отличие от физического, характеризуется менее выраженными изменениями функций в организме. В то же время показатели деятельности нервной, эндокринной, сер

Физиологическая характеристика функционального состояния человека в процессе монотонного труда.
Монотонный(однообраз­ный) труд характеризуется либо выполнением на протяжении рабо­чего дня простых операций, либо работой с сенсорной или ум­ственной нагрузкой низкой или средней

Гипокинезия человека в процессе трудовой деятельности
Типичной чертой профессиональной деятельности большинства работников являются низкие физическая активность и, соответственно, затраты энергии на протяжении ра­бочего дня. Преобладающими стали работ

Физиологические механизмы формирования трудовых навыков
Процесс трудового обучения и формирования наиболее экономич­ных (с точки зрения затрат энергии) и рациональных рабочих дей­ствий проходит три этапа развития, каждый из которых имеет свою физиологич

Работоспособность и утомление
Работоспособность — это свойство человека на протяжении дли­тельного времени и с определенной эффективностью выполнять максимальное количество физической или умственной работы. На протяжении рабоче

Физиологические основы рациональной организации трудовых процессов
Рациональные режимы труда и отдыха. Работоспособность чело­века определяется условиями его работы и отдыха. За время от­дыха физиологические показатели, изменившиеся в процессе работы, должны возвр

Физиологические основы физической культуры и спорта
Спортивная физиология — один из разделов физиологии человека, основным содержание которого является изучение механизмов фи­зиологических функций в процессе выполнения различных

Физическая работоспособность в особых условиях окружающей среды
7.1. Влияние температуры и влажности воздуха на физическую работоспособность. Во время интенсивной и длительной физической работы теплопродукция в мышцах

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги