Замечание 4

То, что через точку А вне прямой “a” можно провести хотя бы одну прямую “b”, не пересекающуюся с “a”, аÇb =Æ, мог доказать еще Евклид.

Действительно, опустим перпендикуляр АВ на прямую “a”. Затем восстановим в точке А перпендикуляр “b” к прямой АВ (рис. 3.).

 
 

Если существует пересечение прямых “a” и “b” в точке Р, то в треугольнике АВР имеем прямой угол В равный внешнему прямому же углу при вершине А. Это противоречит теореме о внешнем угле треугольника (доказанной на основании I–III групп аксиом!). Следовательно, “b”Ç”а”=Æ.

Итак, одна прямая, проходящая через точку и не пересекающая заданную прямую, существует. Но другую, отличную от этой, прямую никто построить не мог. Это породило иллюзию, что аксиома параллельности (V постулат в «началах» Евклида) может быть доказана. На протяжении почти двух тысяч лет геометры пытались вывести V постулат из остальных, рассуждая от противного. Лишь в XIX в. Николаю Ивановичу Лобачевскому (1792–1856) удалось построить мыслимую непротиворечивую геометрию, основанную на отрицании V постулата. Историческую роль V постулата мы исследуем отдельно, познакомившись с требованиями, предъявляемыми к системе аксиом.