Многомерное арифметическое евклидово пространство

Мы отмечали в п.2.3 §2 что аксиоматика Д. Гилберта не может быть обобщена в случае описания отношений между точками, прямыми и плоскостями высоких размерностей в мыслимом многомерном евклидовом пространстве. Обратимся к схеме, согласно которой строилось арифметическое пространство R3. На самом деле эта схема не зависит от размерности вспомогательного векторного пространства Еn. При n=2 и n=3 она просто одна и та же. В случае «мыслимой» многомерной геометрии операция откладывания вектора (1) является формальным определением арифметического n–мерного евклидова пространства Rn, а в остальном схема построения Rn при n>3 такова же, как и при n£3. Эта схема называется обоснованием евклидовой геометрии по Вейлю (Герман Вейль, 1885–1955); она базируется на системе аксиом Вейля, называемой точечно–векторной, так как в ней неопределяемыми понятиями являются точки и векторы. Точки и векторы называются основными геометрическими объектами, вступающими в отношения, определяемыми тремя группами аксиом, образующими аксиоматике Г. Вейля.

I. Группа аксиом векторного пространства.

Эта группа включает восемь аксиом векторного пространства, сформулированных в п. 3.1 §3, и дополнительную девятую аксиому размерности, сформулированную в п. 3.2 §3. Эти аксиомы определяют арифметическую модель Еn n–мерного векторного пространства (см. п. 3.3 §3).

II. Аксиомы скалярного произведения.

Сюда входят три аксиомы 1) – 3), 5), приведенные в виде свойств в §4.

III. Аксиомы складывания векторов.

Эта группа аксиом состоит из трех свойств операции откладывания векторов, определенной в начале этого параграфа.