Особенности микросхем синхронной динамической памяти

Описанная динамическая память управляется в асинхронном ре­жиме. Она тактируется только управляющими сигналами RAS и CAS и момент готовности микросхемы к обмену информацией с процессором, в общем, не известен. При использовании асинхронной памяти контроллер памяти должен учитывать задержку реакции памяти после ее адресации, конкретную для каждого типа микросхем. Обычно это осуществляется регулировкой длительности стробов RAS и CAS.

Результатом дальнейшего развития технологий DRAM стало создание синхронных DRAM (Synhronous DRAM или SDAM). Они получили это название потому, что процессы чтения – записи данных в них синхронизированы тактовыми сигналами (Сlok- Clk). Запоминающие элементы в микросхемах SDAM точно такие же, как и в асинхронных DRAM. Однако благодаря синхронизации процессов чтения – записи данных с фронтами тактовых сигналов контроллер памяти “знает” моменты готовности данных. Это позволяет повысить скорость обмена между процессором и памятью при пакетных пересылках и упростить взаимодействие памяти и других устройств ЭВМ. Перечисленные и другие факторы позволяют современным SDRAM работать на тактовой частоте до 400 МГц.

В состав SDRAM включают встроенную схему регенерации, которая содержит счетчик адреса, формирующий адрес строки, требующей регенерации. В ти­пичной SDRAM данные регенерируются по меньшей мере каждые 64 мс. Включение схемы регенерации в состав SDRAM позволяет сохранять их содержимое в “спящем” режиме работы ЭВМ, когда для экономии энергопотребления включенного, но не используемого пользователем компьютера отключается часть его подсистем, при этом память переводится в режим саморегенерации.

Конструктивно память SDRAM выполняется в виде модулей DIMM с разрядностью 64 бита и емкостью до 256 Мбайт.