Момент количества движения

Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы опре­делили оператор J^z через R^z(j) — оператор поворота на угол j вокруг оси z. Рассмотрим сейчас систему, описываемую всего лишь одной-единственной волновой функцией y(r), которая является функцией одних только координат и не учитывает того факта, что спин у электрона должен быть направлен либо вверх, либо вниз. Это значит, что мы собираемся пока пренебречь внутренним моментом количества движения и намерены ду­мать только об орбитальной части. Чтобы подчеркнуть разли­чие, обозначим орбитальный оператор L^z и определим его че­рез оператор поворота на бесконечно малый угол e формулой

(напоминаем: это определение применимо только к состоянию |y>, у которого нет внутренних спиновых переменных, а есть только зависимость от координат r: х, у, z). Если мы взглянем на состояние |y> из новой системы координат, повернутой во­круг оси z на небольшой угол e, то увидим новое состояние:

Если мы решили описывать состояние |y> в координатном представлении, т. е. с помощью его волновой функции y (r), то следует ожидать такого равенства:

Что же такое? А вот что. Точка Р (х, у) в новой системе коор­динат (на самом деле х', у', но мы убрали штрихи) раньше имела координаты x-ey и y+ex (фиг. 18.2).

Фиг. 18.2. Поворот осей во­круг оси z на малый угол e.

 

Поскольку амплитуда того, что электрон окажется в точке Р, не меняется от поворота систе­мы координат, то можно писать

(напоминаем, что e — малый угол). Это означает, что

Это и есть наш ответ. Обратите, однако, внимание, что это определение эквивалентно такому:

Или, если вернуться к нашим квантовомеханическим операто­рам, можно написать

Эту формулу легко запомнить, потому что она похожа на знако­мую формулу классической механики: это z-компонента вектор­ного произведения

L=rXp.(18.72)

Одна из забавных сторон манипуляций с операторами за­ключается в том, что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все пов­торялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики.

Вот вам уравнение, которое отличается. В классической фи­зике

хрхxх=0.

А что в квантовой механике?

Подсчитаем это в x-представлении. Чтобы было видно, что мы делаем, приложим это к некоторой волновой функ­ции y(x). Пишем

или

Вспомним теперь, что производные действуют на всё, что справа. Получаем

Ответ не нуль. Вся операция попросту равнозначна умножению на -h/i:

Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики!

Отметим, что если два каких-то оператора А и В, взятые в сочетании

не дают нуля, то мы говорим, что «операторы не перестановоч­ны», или «операторы не коммутируют». А уравнение наподо­бие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для pх и у (или коммутатор рх и у) имеет вид

Существует еще одно очень важное перестановочное соотно­шение. Оно относится к моментам количества движения. Вид его таков:

Если вы хотите приобрести некоторый опыт работы с операто­рами x^ и p^, попробуйте доказать эту формулу сами.

Интересно заметить, что операторы, которые не коммути­руют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).