Концептуальная модель принятия решений

 

Анализ многочисленных публикаций по различным аспектам проблемы выбора показывает, что в настоящее время наметилась прогрессивная тенденция к интеграции различных научных направлений, связанных с проблематикой рационального или оптимального выбора, оптимизацией систем и процессов управления ими. Данная тенденция обусловлена глубокой общностью содержательной стороны проблемы выбора, которая по сути обобщает постановку многочисленных классов частных задач подготовки и принятия решений в сложных условиях обстановки.

Интегрированный подход к использованию достижений, полученных в рамках различных научных направлений по исследованию проблемы выбора, предполагает, прежде всего, рассмотрение всех вопросов выбора на основе введения заданной системы наиболее общих понятий и определений, сформировавшихся в рамках указанных научных направлений и прошедших проверку временем. К таким понятиям можно, например, отнести: отношения предпочтения, множества допустимых альтернатив выбора и функций выбора (ситуационных функций выбора).

Отношение предпочтения следует считать центральным понятием теории выбора. Широкое привлечение аксиоматики бинарных отношений и развитие на этой основе теории полезности, рассмотрение функций полезности в экономико-прикладных исследованиях, целевых функций в задачах исследования операций и функционалов качества в задачах управления динамическими системами как частных способов задания отношений предпочтения - вот далеко не полный перечень возможностей обобщения на основе концепции предпочтения.

Однако следует подчеркнуть, что необходимость указанного выше подхода к обобщению нельзя было бы считать столь острой, если ограничиться рассмотрением задач выбора с одним отношением предпочтения (выбор с унипредпочтением). Требование достижения адекватного математического описания проблем выбора (проблем принятия решений) в сложной обстановке выдвигает на передний план рассмотрение задач выбора с многими отношениями предпочтения (выбор с мультипредпочтением) в условиях неопределённости воздействий на соответствующие системы внешней среды.

На практике все большее значение приобретают постановки задач многокритериальнойили векторной оптимизации, являющихся одним из классов задач выбора с мультипредпочтением.

Важное место в современной теории выбора принадлежит и другим классам задач, которые по самой своей сущности являются также задачами выбора с мультипредпочтением. Среди них следует прежде всего выделить задачи группового выбора, каскадного (иерархического) выбора, игрового выбора и некоторые другие классы задач.

В групповом выборе участвует группа лиц, каждое из которых имеет своё индивидуальное отношение предпочтения или вектор индивидуальных предпочтений. Теория группового выбора является научной основой развития метода экспертных оценок, который, в свою очередь, нашёл широкое применение при оценивании и выборе решений на различных этапах жизненного цикла сложных технико-экономических систем.

Для каскадного (иерархического) выбора характерен упорядоченный выбор элементов сложной (составной) альтернативы. Частными случаями каскадного выбора являются многоэтапный выбор с иерархией критериальных функций. Первый из этих случаев обычно связан с расчленением задачи выбора во времени, а второй - можно отождествлять с определённым пространственным расчленением решения задачи выбора. В последние годы в связи с исследованиями сложных технико-экономических систем большой интерес стал проявляться к задачам координационного выбора. При этом задачи координационного выбора с одной стороны могут рассматриваться как подкласс задач каскадного выбора, а с другой стороны - как подкласс задач игрового выбора. Последнее рассмотрение стало возможным в связи с развитием теории игр с непротивоположными интересами. В свою очередь, указанная теория является обобщением классической теории игр.

Говоря в целом о процессах подготовки и принятия решений, следует подчеркнуть, что они представляют собой последовательность специфических мероприятий и процедур, направленных на выработку вариантов решений применительно к конкретным задачам или классам задач. Наиболее важными факторами, характеризующими и сам процесс и ситуацию выбора, являются следующие элементы, составляющие концептуальную модель принятия решений

S – субъект, принимающий решение и ответственный за последствия принятого решения. Субъектом может быть как отдельный человек, лицо, принимающее решение (ЛПР), так и группа лиц, или коллективный орган принятия решений. В соответствии с этим и задачи принятия решений принято подразделять на индивидуальные и групповые (коллективные).

D - множество допустимых решений (или по-другому множество допустимых альтернатив). Именно из этого множества ЛПР должен выбрать наилучшее в определённом смысле решение, согласованное с целями, мотивами, собственными предпочтениями. Множество допустимых альтернатив может быть конечным и бесконечным (счётным, концептуальным и т.п.), детерминированным, случайным, нечётким, задаваться в явном и неявном виде с помощью системы линейных и нелинейных ограничений.

R – множество отношений предпочтения, заданных либо непосредственно в виде отношений, либо в виде функций, функционалов, операторов в неявном виде (например, через имитационную модель).

F – множество решающих правил (правил согласования), представляющих из себя, в общем случае, операторы, позволяющие формировать на множестве отношений предпочтений ЛПР результирующее отношение предпочтения (результирующую функцию выбора).

Перечисленные элементы концептуальной модели принятия решений можно записать в виде следующего кортежа <S, D, R, F>.


Рис.1.2.1.

 

Исходные данные Искомые переменные Зависимости Классы задач
Детермини-рованные Непрерывные Линейные Линейного программирования
Детермини-рованные Целочисленные Линейные Целочисленного программирования
Детермини-рованные Непрерывные, целочисленные Нелинейные Нелинейного программирования
Случайные Непрерывные Линейные Стохастического программирования
Нечеткие Непрерывные и целочисленные Комбинированные Нечеткого программирования
Комбинированные Комбинированные Комбинированные Комплексное моделирование

Рис.1.2.2.