Модели, фиксирующие особенности свойств оригинала

С кибернетической точки зрения многие модели рассматриваются как некоторый ящик с входами и выходами, о котором может быть что-то известно.

Кибернетическая модель типа «чёрный ящик» (непрозрачный ящик, модель «вход-выход») характеризуется тем, что содержимое ящика неизвестно и доступны для рассмотрения лишь входы и выходы. Это означает, что, воздействуя на входы, можно фиксировать его реакцию либо, располагая входной и выходной информацией, можно говорить о функциональном назначении ящика. Согласно классификации такой тип модели относится к функциональным.

Кибернетическая модель типа «серый ящик» используется в том случае, когда известен полностью состав ящика либо частично его содержание (функциональные элементы, функциональные элементы и отношения между ними). Им определяются структурные модели.

Если структура содержимого ящика задана, но не определены значения её параметров, то имеет место кибернетический «белый, прозрачный ящик». Им по сути дела представляются параметрические модели.

В последние годы анализ и проектирование сложных систем различной природы основаны на объектных и компонентных моделях. Они особенно популярны при разработке информационных систем. В отличие от структурных, функциональных и параметрических моделей объектная модель фиксирует и устройство моделируемой сущности, и её поведение не только во времени, но и в пространстве. Посредством объектной модели рассматривают разные аспекты системы-сущности (физической либо абстрактной, события либо сложного процесса) как раздельно, так и в виде целостности.

Функциональные модели предназначены для выражения функций оригинала и/или его компонентов, а также окружающей среды. Такие модели часто описывают функции оригинала либо каких-то его элементов зависимостями, существующими между его выходными и входными величинами. При этом их содержимое и структура обычно неизвестны. Это свидетельствует о том, что конкретная функция может быть реализована различными сущностями. Например, текущее время могут показывать и солнечные, и электронные часы.

В функциональной модели часто разделяют входные величины на несколько категорий. В одном случае они могут быть сигналами управления, контроля и мешающими факторами, в другом — потоками (вещественным, энергетическим, информационным). Обычно функциональность объекта или процесса проявляется в преобразовательных действиях (вещества, энергии, информации). Например, на этапе выбора физического принципа действия устройства можно считать, что конструктивный элемент типа «чёрный ящик» выполняет операцию или функцию, реализуемую за счёт некоего эффекта. Тогда изучение модели связано с поиском этого эффекта при заданных видах входных и выходных величин. Может оказаться так, что эта операция сопровождается появлением побочного нежелательного эффекта. В таком случае исследование модели будет направлено на поиск воздействия либо дополнительной операции, устраняющей этот эффект (например, с применением вещественно-полевого анализа).

Изучение функций элементов сложных систем сопровождается не только их перечнем, но и заданием отношений (в частном случае — связей) между ними, то есть их структуризацией.

В структурных моделях отражаются элементный состав оригинала, положение и форма его элементов в объёме пространство-время .

Типичными структурами сущностей являются линейная, кольцевая, звездообразная, иерархическая, полносвязная и комбинированная (рисунок 13).

Линейная структура указывает на связь элемента с двумя соседними элементами. Здесь отсутствуют отношения подчинённости, что свидетельствует о её ненадежности при разрыве какой-либо связи.

Кольцевая структура обеспечивает два направления отношений.

Звездообразная структура имеет центральный командный узел, с которым связаны все остальные узлы системы.

Иерархическая структура поддерживает неравноправность связей между элементами, проявляющаяся в том, что воздействие в одном из направлений гораздо больше влияет на элемент, нежели в другом. Введение иерархии упрощает создание и описание системы, позволяет рассматривать связи на различных структурных уровнях (концептуальном, топологическом и др.). Однако любая иерархия сужает возможности и гибкость системы при существенных изменениях в окружающей среде;

Полносвязанная структура считается наиболее сложной, но обладает высокой надёжностью. В ней каждый элемент связан со всеми имеющимися элементами. Если в модели отсутствует одна или несколько межэлементных связей, то она считается сетевой.

Комбинированная структура представлена совокупностью вышеприведённых структур.

Структуры в зависимости от степени устойчивости межэлементных отношений подразделяются на:

  1. детерминированные (в них отношения либо зафиксированы, либо изменяются по некоторому (предопределённому) закону);
  2. нечёткие (межэлементные отношения задаются нечёткими множествами);
  3. хаотические детерминированные и случайные (стохастические). Детерминированный хаос проявляется в неустойчивых нелинейных системах с ограничениями. В структурах со случайным хаосом элементы вступают в отношения друг с другом непредсказуемым образом (например, броуновское движение частиц);
  4. смешанные.

Функциональные и структурные модели сущностей могут быть удачно заданы графами. Создание таких моделей, как правило, связано с декомпозицией —расчленением на ряд компонентов или частей для упрощения анализа и правильности выбора функций и структурных компонентов и системы в целом.

Параметрические модели отображают множество свойств, характеристик и параметров объектов и их компонентов различных уровней сложности. К таким моделям относятся, в частности, спецификации на сборку изделий, оформление нормативно-справочной информации, дву- и трёхмерные изображения деталей, узлов, процесса сборки изделия.

При разработке и проектировании сложных объектов зачастую на разных уровнях расчленения системы используют модели, обобщающие возможности функциональных, структурных и параметрических моделей. К их числу относятся, в частности, процедурные, географические, топографические и геометрические модели.

Процедурные модели диктуют порядок взаимодействия элементов оригинала при выполнении различных операций (например, в ходе процедур принятия решений, деятельности проектировщиков) при реализации тех или иных функций объекта. В состав последних могут входить модели операций, надёжности и живучести.

Географические модели отражают пространственное местоположение и отношения элементов географического объекта (участка, цеха, технологических систем, городского хозяйства, флоры и фауны).

На базе топографических моделей изучаются элементный состав и внутренние межэлементные связи оригинала. Чаще всего такие модели — это графы, матрицы инциндентности (матрица, хранящая информацию о связях элементов в объекте или процессе) или смежности (матрица, хранящая информацию о структуре графа. Элемент матрицы содержит информацию о связи). В общем случае граф определяет две математические величины — множество и соответствие. Так как граф изображается совокупностью связанных определённым образом точек, то математически он описывается множеством вершин и соответствий. Для каждой вершины указывается соответствие, которое представляет собой множество вершин, соединённых дугами с рассматриваемой вершиной.

Геометрическая модель может быть:

На основании геометрических характеристик деталей можно вычислять их массы, центр масс, моменты инерции, жёсткость и демпфирование.

При компьютерном геометрическом моделировании легко изменять размеры модели при заданной топологии изделия и архитектурного объекта, организовать ввод-вывод графической информации. Геометрическое представление, реализуемое средствами компьютерной графики, является одним из основных компонентов проектных процедур прикладного математического обеспечения компьютерного проектирования конструкций, траекторий движения инструмента, домов, строений и т. д.

Алгоритмические модели.Моделирующие алгоритмы предназначены для отображения поведения реальных систем, систем вычисления и обработки информации.