Закон распределения дискретной случайной величины

Рассмотрим дискретную случайную величину на примере.

Пример 1.

Число появлений герба при трех бросаниях монеты является дискретной случайной величиной Х. Возможные значения числа появлений герба: 0, 1, 2, 3. Следует найти вероятность появления герба в одном испытании.

Решение.

Вероятность появления герба в одном испытании равна p=1/2. Противоположное ему событие: герб не выпал, вероятность этого события по формуле (4.5) равна q=1-p=1/2.

1) Событие 1. «Три раза бросили монету и ни разу герб не выпал». Это сложное событие состоит из появления трёх совместных и независимых элементарных событий: «герб не выпал в одном испытании». Для события «три раза бросили и ни разу герб не выпал», которое обозначим Р(0), вероятность вычисляется по формуле умножения (4.6а) для независимых событий:

.

2) Событие 2. «Три раза бросили монету и один раз герб выпал». Это сложное событие состоит из появления одного из трёх несовместных и независимых событий: «герб выпал в одном из трёх совместных испытаний». Для события «три раза бросили монету и один раз герб выпал» вероятность будет состоять из суммы несовместных событий по формуле (4.2а), где каждое слагаемое вычисляется по формуле умножения (4.6а) для независимых событий:

.

3) Событие 3. «Три раза бросили и два раза выпал герб». Для этого события вероятность события будет состоять из суммы событий:

.

4) Событие 4. «Три раза бросили и все три раза выпал герб». Вероятность этого события совпадает с первым и вычисляется по формуле умножения (4.6а).

.

Здесь: p1, p2, p3 – вероятность выпадения герба в 1, 2, 3 испытаниях.

q1, q2, q3 – вероятность не выпадения герба в 1, 2, 3 испытаниях.

Результаты вычислений вынесены в таблицу 5.1.

Таблица 5.1

Событие Х герб не выпал герб выпал 1 раз герб выпал 2 раза герб выпал 3 раза
хi
Вероятность события: Р(хi)=рi

 

Законом распределениядискретной случайной величины называют соответствие между полученными значениями дискретной случайной величины и их вероятностями. Его можно задать:

1) таблично (рядом распределения);

2) графически;

3) аналитически (в виде формулы).

В примере 1 закон распределения задан в виде ряда распределения (таблицей 5.1), где представлены все возможные значения хi и соответствующие им вероятности рi = Р (Х = хi). При этом вероятности рi удовлетворяют условию:

,

потому что:

,

где число возможных значений n может быть конечным или бесконечным.

Графическое изображение ряда распределения называется многоугольником распределения. Для его построения возможные значения случайной величины (хi) откладываются по оси абсцисс, а вероятности (рi) – по оси ординат. Точки c координатами (хi, рi) соединяются ломаными линиями.

Функция F(х) для дискретной случайной величины вычисляется по формуле:

  , (5.3)

где суммирование ведется по всем значениям i, для которых хi < х.

Пример 2.

Для задачи в примере 1 найти функцию распределения вероятности F(х) этой случайной величины и построить ее. Построить многоугольник распределения.

Решение.

Если х £ 0, то F(х) = Р (Х < х) = 0.

Если 0 < х £ 1, то F(х) = Р (Х < х) = 1/8.

Если 1 < х £ 2, то F(х) = Р (Х < х) = 1/8 + 3/8 = 0,5.

Если 2 < х £ 3, то F(х) = Р (Х < х) = 1/8 + 3/8 + 3/8 = 7/8.

Если х > 3, то F(х) = Р (Х < х) = 1/8 + 3/8 + 3/8 + 1/8 = 1.

В таблицу 5.2 внесены значения функции распределения вероятности F(х) случайной величины х.

Таблица 5.2

Хi >3
функция распределения F(х) 0,125 0,5 0,875

 

Для построения многоугольника распределения значения случайной величины х переписаны из таблицы 5.1 в таблицу 5.3 в более компактной форме.

Таблица 5.3

хi
Ряд распределения Р(хi)= рi 0,125 0,375 0,375 0,125

 

Многоугольник распределения вероятности представлен на рис. 5.1.

Рис. 5.1. Многоугольник распределения

Функция распределения вероятности представлена на рис.5.2.

Рис. 5.2. Функция распределения