Механічні системи

 

Фазовими змінними в механічних поступальних системах є сили й швидкості. Використовують одну із двох можливих електромеханічних аналогій. Надалі будемо використати ту з них, у якій швидкість відносять до фазових змінних типу потенціалу, а силу вважають фазовою змінною типу потоку. З огляду на формальний характер подібних аналогій, рівною мірою можна застосовувати й протилежну термінологію.

Компонентне рівняння, що характеризує інерційні властивості тіл, у силу другого закону Ньютона має вигляд:

(3.3)

де — сила; — маса; — поступальна швидкість.

Пружні властивості тіл описуються компонентним рівнянням, яке можна одержати з рівняння закону Гука. В одномірному випадку (якщо розглядаються поздовжні деформації пружного стрижня):

(3.4)

де — механічна напруга; — модуль пружності; — відносна деформація; — зміна довжини пружного тіла під впливом . З огляду на, що , де — сила, — площа поперечного переріза тіла, і диференціюючи (3.4), маємо:

або

(3.5)

де — жорсткість (величину, зворотню жорсткості, іноді називають гнучкістю ), — швидкість.

Диссипативні властивості в механічних системах твердих тіл виражаються співвідношеннями, що характеризують зв'язок між силою тертя й швидкістю взаємного переміщення тіл, причому в цих співвідношеннях похідні сил або швидкостей не фігурують.

Топологічні рівняння характеризують, по-перше, закон рівноваги сил: сума сил, прикладених до тіла, включаючи силу інерції, дорівнює нулю (принцип Даламбера), по-друге, закон швидкостей, відповідно до якого сума відносної, переносної й абсолютної швидкостей дорівнює нулю.

У механічних обертальних системах справедливі компонентні й топологічні рівняння поступальних систем із заміною поступальних швидкостей на кутові, сил – на обертальні моменти, мас – на моменти інерції, жорсткостей – на обертальні жорсткості.

Є істотна відмінність у моделюванні електричних і механічних систем: перші з них одномірні, а процеси в других часто доводиться розглядати у двох- (2D) або тривимірному (3D) просторі. Отже, при моделюванні механічних систем у загальному випадку в просторі 3D потрібно використовувати векторне зображення фазових змінних, кожна з яких має шість складових, відповідним шести ступеням свободи.

Однак відзначені вище аналогії залишаються справедливими, якщо їх відносити до проекцій сил і швидкостей на кожну просторову вісь, а при графічному зображенні моделей використовувати шість еквівалентних схем – три для поступальних складових і три для обертальних.